簡易檢索 / 詳目顯示

研究生: 何承錥
He, Cheng-Yu
論文名稱: 解析單原子自旋的Yu-Shiba-Rusinov束縛態和Kondo共振態
Resolving Yu-Shiba-Rusinov Bound State and Kondo Resonance from Single Atomic Spin Entity
指導教授: 徐斌睿
Hsu, Pin-Jui
口試委員: 莊豐權
Chuang, Feng-Chuan
科契諾
Stefan, Kirchner
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 97
中文關鍵詞: 掃描穿隧顯微鏡Yu-Shiba-Rusinov束縛態Kagome晶格Kondo效應鉍烯掃描穿隧能譜
外文關鍵詞: Scanning tunneling microscope, Yu-Shiba-Rusinov bound states, Kagome lattice, Kondo effect, bismuthene, scanning tunneling spectroscopy
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    Introduction of local magnetism in a superconductor exhibits exchange coupling interaction with the Cooper pairs of superconductor. This interaction locally perturbs or breaks the Cooper pairs, leading to the formation of localized bound states within the superconducting energy gap, known as Yu-Shiba-Rusinov bound states (Shiba states). In
    this thesis, we have investigated this phenomenon by introducing magnetic Mn atoms into the Ni Kagome islands grown on an s-wave superconducting Pb(111) substrate. Based on the growth of Mn atoms on the Ni Kagome islands, we have observed two types of structures called as: monomer and trimer. Each structure exhibits different numbers of bound states with distinct energy positions. Where on one hand, the trimer structure exhibits a high degeneracy feature as determined by the analysis of the bound state number. On another hand, the monomer structure shows partial disruption of electron degeneracy. Furthermore, the decay of conductance mapping intensity with lateral distance for both structures has been measured that the decay rate of the trimer structure is relatively higher than that of the monomer structure. Finally, the energy positions of the bound states for the monomer and trimer structures have obtained by using deconvolution process, which are 0.94 meV, 1.04 meV, 1.22 meV and 0.34 meV, 0.84 meV, respectively.
    When magnetic atoms are introduced into a metallic substrate, spins of magnetic atoms are screened out by the spin of conduction electrons near the Fermi level, leading to an exchange coupling interaction. This interaction results in a characteristic zero-bias peak observed at the Fermi level, known as the Kondo effect. We have investigated the Kondo effect by introducing magnetic molecules, specifically Iron(II) Phthalocyanine (FePc) molecules on bismuthene grown on an Ag(111) substrate. Based on the growth behavior of FePc molecules, we have observed that the ground state energy of FePc molecules when absorbed on the bismuthene structure is relatively higher than the buckled bismuthene phase, rectangular phase, the edge of the bismuthene phase, and the defects on the bismuthene phase. Additionally, we observe that when FePc molecules with eight hydrogen atoms absorbed on the bismuthene phase, do not exhibit Kondo effect. However, after dehydrogenation of the FePc molecule, local spins are gradually restored, and a pronounced Kondo effect signal has been observed near the Fermi level.

    Abstract I Acknowledgements III Contents IV List of Figures VII List of Tables XVII 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Superconductor . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Meissner Effect . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Bardeen-Cooper-Schrieffer (BCS) Theory . . . . . . . . . . . . 4 1.2.3 The Hamiltonian of BCS s-wave Superconductor . . . . . . . . 7 1.3 Yu-Shiba Rusinov Bound State (Shiba state) . . . . . . . . . . 13 1.3.1 The Hamiltonian of Shiba State on the BCS s-wave Superconductor 17 1.4 Relevant Literature on Magnetic Atoms on Superconductors . . . 22 1.5 Kondo Effect . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.1 Kondo Model . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 The Anderson Model . . . . . . . . . . . . . . . . . . . . . 32 1.6 Relevant Literature on Transition Metal Phthalocyanine (TMPc) Molecule on Metallic Substrate . . . . . . . . . . . . . . . . . . 37 1.7 Relevant Literature on Ultraflat Bismuthene on Ag(111) Substrate 38 2 Experimental Methods 42 2.1 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1 Dry Scroll Pump . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2 Turbo Pump . . . . . . . . . .. . . . . . . . . . . . . . . . 46 2.2.3 Ion Pump and Titanium Sublimation Pump (TSP) . . . . . . . . 47 2.3 Vacuum Gauge . . . . . . . . . . . . . . .. . . . . . . . . . . 48 2.3.1 Pirani Gauge . . . . . . . . . . . . . .. . . . . . . . . . . 49 2.3.2 Ion Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.4 Residual Gas Analyzer (RGA) . . . . . . . . . . . . . . . . . . 50 2.4.1 Ionizer . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.2 Quadrupole Mass Filter . . . . . . . . . . . . . . . . . . . 53 2.4.3 Ion Detector . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Vapor Deposition Method . . . . . . . . . . . . . . . . . . . . 54 2.5.1 Electron-Beam Evaporator . . . . . . .. . . . . . . . . . . . 54 2.5.2 Knudsen Cell (K-Cell) . . . . . . . . . . . . . . . . . . . . 56 2.6 Quantum Tunneling Effect . . . . . . . .. . . . . . . . . . . . 56 2.6.1 One-Dimensional Potential Barrier . . . . . . . . . . . . . 57 2.6.2 Tersoff-Hamann Approximation . . . . . . . . . . . . . . . . 59 2.6.3 Scanning Tunneling Microscope (STM) . . . . . . . . . . . . . 62 2.6.4 Scanning Tunneling Spectroscopy (STS) . . . . . . . . . . . . 63 2.7 Scanning Mode . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.7.1 Constant Height Mode . . . . . . . . . . . . . . . . . . . . 65 2.7.2 Constant Current Mode . . . . . . . . . . . . . . . . . . . . 65 2.8 Cooling System . . . . . . . . . . . . . . . . . . . . . . . . 66 2.9 Sample Preparation . . . . . . .. . . . . . . . . . . . . . . . 68 2.9.1 Substrate Preparation . . . . . . . . . . . . . . . . . . . . 68 2.9.2 Mn Atoms on Ni Kagome Island on Pb(111) . . . . . . . . . . 70 2.9.3 Iron(II) Phthalocyanine (FePc) Molecules on Bismuthene on Ag(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Experimental Results 72 3.1 Mn Atoms Adsorbed on Ni Kagome Islands on Pb(111) . . . . . . . 72 3.1.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . 72 3.1.2 Ni Kagome Islands on Pb(111) . . . . . . . . . . . . . . . . 73 3.1.3 Mn atoms on Ni Kagome Island on Pb(111) . . . . . . . . . . . 73 3.2 FePc Molecules Adsorbed on Bismuthene on Ag(111) . . . . . . 85 3.2.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . 85 3.2.2 FePc Molecules on Bismuthene on Ag(111) . . . . . . . . . . . 85 3.2.3 Tip Induced Manipulation of FePc Molecules on Bismuthene on Ag(111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.4 The Kondo Resonance Induced by Removing the Hydrogen Atoms from FePc Molecules on Bismuthene on Ag(111) . . . . 87 4 Summary 91 Bibliography 93

    1. Nadj-Perge, S., Drozdov, I. K., Li, J., Chen, H., Jeon, S., Seo, J., MacDonald, A. H., Bernevig, B. A. & Yazdani, A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).
    2. 林子軒. 磁性原子在超導鎳Kagome晶格之研究 (2022).
    3. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Physical review 108, 1175 (1957).
    4. Tinkham, M. Introduction to superconductivity (Courier Corporation, 2004).
    5. Timm, C. Theory of superconductivity. Institute of theoretical Physics Dresden (2012).
    6. Fernandes, R. M. Lecture notes: BCS theory of superconductivity 2015.
    7. Bogoljubov, N. N. On a new method in the theory of superconductivity. Joint Institute for Nuclear Research. Dubna, USSR (2007).
    8. Yu, L. Bound state in superconductors with paramagnetic impurities (2005).
    9. Shiba, H. Classical spins in superconductors. Progress of theoretical Physics 40, 435–451 (1968).
    10. Rusinov, A. Superconductivity near a paramagnetic impurity. JETP Lett.(USSR)(Engl. Transl.);(United States) 9 (1969).
    11. Rusinov, A. Theory of gapless superconductivity in alloys containing paramagnetic impurities. Sov. Phys. JETP 29, 1101–1106 (1969).
    12. Yazdani, A., Jones, B., Lutz, C., Crommie, M. & Eigler, D. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).
    13. Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Progress in Surface Science 93, 1–19 (2018).
    14. Farinacci, L., Ahmadi, G., Reecht, G., Ruby, M., Bogdanoff, N., Peters, O., Hein-rich, B. W., von Oppen, F. & Franke, K. J. Tuning the coupling of an individual magnetic impurity to a superconductor: quantum phase transition and transport.
    Physical review letters 121, 196803 (2018).
    15. Choi, D.-J., Rubio-Verd ́u, C., De Bruijckere, J., Ugeda, M. M., Lorente, N. & Pascual, J. I. Mapping the orbital structure of impurity bound states in a superconductor.
    Nature communications 8, 15175 (2017).
    16. Ruby, M., Peng, Y., von Oppen, F., Heinrich, B. W. & Franke, K. J. Orbital picture of yu-shiba-rusinov multiplets. Physical review letters 117, 186801 (2016).
    17. Kouwenhoven, L. & Glazman, L. Revival of the Kondo effect. Physics world 14, 33 (2001).
    18. Kondo, J. Resistance minimum in dilute magnetic alloys. Progress of theoretical physics 32, 37–49 (1964).
    19. Kondo, J. Effect of ordinary scattering on exchange scattering from magnetic impurity in metals. Physical Review 169, 437 (1968).
    20. Zhang, Y. -h., Kahle, S., Herden, T., Stroh, C., Mayor, M., Schlickum, U., Ternes, M., Wahl, P. & Kern, K. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nature communications 4, 2110 (2013).
    21. Anderson, P. A poor man’s derivation of scaling laws for the Kondo problem. Journal of Physics C: Solid State Physics 3, 2436 (1970).
    22. Schrieffer, J. R. & Wolff, P. A. Relation between the anderson and kondo hamiltonians. Physical Review 149, 491 (1966).
    23. Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Reviews of modern physics 47, 773 (1975).
    24. Anderson, P. W. Localized magnetic states in metals. Physical Review 124, 41 (1961).
    25. Ternes, M., Heinrich, A. J. & Schneider, W. -D. Spectroscopic manifestations of the Kondo effect on single adatoms. Journal of Physics: Condensed Matter 21, 053001 (2008).
    26. Fano, U. Effects of configuration interaction on intensities and phase shifts. Physical review 124, 1866 (1961).
    27. Zhao, A., Li, Q., Chen, L., Xiang, H., Wang, W., Pan, S., Wang, B., Xiao, X., Yang, J., Hou, J., et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).
    28. Liu, L., Yang, K., Jiang, Y., Song, B., Xiao, W., Song, S., Du, S., Ouyang, M., Hofer, W. A., Neto, A. H. C., et al. Revealing the atomic site-dependent g factor within a single magnetic molecule via the extended Kondo effect. Physical Review Letters 114, 126601 (2015).
    29. Sun, S., You, J. -Y., Duan, S., Gou, J., Luo, Y. Z., Lin, W., Lian, X., Jin, T., Liu, J., Huang, Y., et al. Epitaxial growth of ultraflat bismuthene with large topological band inversion enabled by substrate-orbital-filtering effect. ACS nano 16, 1436– 1443 (2021).
    30. 伍秀菁 汪若文, 林. 真空技術與應用 (國科會精密儀器發展中心, 2001).
    31. How Scroll Pumps Work. https://www.across international.com/media/How Scroll Pumps Work.gif.
    32. Kurt J. Kesker Company: Frequently Asked Questions. https://www.lesker.com/new web/faqs/question.cfm?id=477.
    33. Operating Manual and Programming Reference: Model RGA, Residual Gas Analyzer. SRS Stanford Research Systems (2009).
    34. Instruction Manual UHV Evaporator EFM2/3(s)/4(s) Triple Evaporator EFM3T(s) IBAD Evaporator EFM3i. FOCUS GmbH (2017).
    35. Bardeen, J. Tunnelling from a many-particle point of view. Physical review letters 6, 57 (1961).
    36. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Physical Review B 31, 805 (1985).
    37. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Physical review letters 50, 1998 (1983).
    38. Krull, C. Electronic structure of metal phthalocyanines on Ag (100) (Springer Science & Business Media, 2013).
    39. Ukraintsev, V. A. Data evaluation technique for electron-tunneling spectroscopy. Physical Review B 53, 11176 (1996).
    40. Huda, M. et al. Epitaxial growth of lateral graphene/hexagonal boron nitride heterostructures MA thesis (2016).
    41. USM1300S He 3E. Operating Manual. Unisoku (2018).
    42. Lin, Y.-H., Chen, C.-J., Kumar, N., Yeh, T.- Y., Lin, T.-H., Bl ̈ugel, S., Bihlmayer, G. & Hsu, P.-J. Fabrication and Imaging Monatomic Ni Kagome Lattice on Superconducting Pb (111). Nano Letters 22, 8475–8481 (2022).
    43. 陳 家 儒. 於 單 原 子 層 鎳 鉛 合 金 與 鎳 奈 米 島 由 鄰 近 效 應 所 引 發 之 超 導 態 (2020).
    44. Isvoranu, C., Wang, B., Ataman, E., Schulte, K., Knudsen, J., Andersen, J. N., Bocquet, M. -L. & Schnadt, J. Pyridine adsorption on single-layer iron phthalocyanine on Au (111). The Journal of Physical Chemistry C 115, 20201–20208 (2011).

    QR CODE