簡易檢索 / 詳目顯示

研究生: 陳柏榮
Chen, Bo-Rong
論文名稱: 二氧化鈦奈米粒子製備與分析
Preparation and Structural Analysis of Tb-doped TiO2 Nanoparticles
指導教授: 蘇雲良
Soo, Yun-Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 二氧化鈦
外文關鍵詞: Titanium dioxide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    二氧化鈦由於被發現在摻雜稀土元素後,螢光光譜上有成功的將外界激發光能量轉移到稀土元素而出現稀土元素特徵光譜的發現,本論文希望以溶膠凝膠法製備奈米粒子,藉由改變反應條件來增進摻雜的稀土元素特徵螢光的發光效率。
    本實驗使用溶膠凝膠法(sol-gel)製備二氧化鈦奈米粒子,製備過程中以異丙氧烷基鈦(TTIP)作為前驅物,並加入TbCl3以摻雜Tb離子,背景溶劑使用乙醇,硝酸做為酸性催化劑,經過乾燥處理後經過500℃~900℃通氧氣煅燒得到摻雜Tb的二氧化鈦奈米粒子,其大小經由改變硝酸重量百分比濃度以及Tb濃度得到7nm~18nm之奈米粒子。
    實驗中得到的樣品以XRD、TEM、EXAFS和PL與PLE的量測來探討其晶型、顆粒大小與發光機制。由XRD、TEM的結果可以發現粉末大小分布約為7nm~18nm, 發現到Tb摻雜濃度越高時對粒徑越小,原因據推論為奈米粒子表面所形成的Tb-O-Ti鍵結,並以EXAFS證明此鍵結的存在。另外藉由PL光譜,發現硝酸濃度影響了主體螢光與Tb特徵螢光的放射強度,且兩者變化趨勢相同;由PLE結果得知Tb特徵螢光的吸收峰為378nm,屬於二氧化鈦主要吸收區段之內,此兩種發現皆提供了可能的成功能量轉移機制的訊息。最後PL光譜中的寬譜帶形狀與位置與文獻中二氧化鈦主體螢光相同,因此推測PLE另一個吸收峰應來自於螢光強度較強的二氧化鈦主體螢光。


    Abstract
    Lanthanide doped semiconductors have attracted great interest due to potential applications in photoelectric devices and optical communications, as well as excellent mechanical, thermal and anticorrosive properties.
    To study the physical properties of Tb-doped titanium dioxide nanoparticles, a series of samples have been synthesized by using sol-gel method under different preparation conditions (dopant concentrations and acidic catalyst). XRD patterns, TEM images, EXAFS analysis and PL、PLE spectra were used to characterize TiO2:Tb nanoparticles. As revealed by XRD, the average particle size of the samples appears to decrease with increasing Tb3+ concentration. On the other hand, the phase transition temperature increases with Tb3+ concentration. Both are attributed to the formation of Tb-O-Ti bond on the surface of titanium dioxide particles. Because the ionic radius of Tb3+ is larger than that of Ti4+, Tb can hardly substitute for the Ti4+ sites. Instead, Tb-O-Ti bonds are formed on the surface and therefore restrain the crystallite growth and phase transformation. In order to offer proof of this speculation, the local structure of Tb ions has been studied by EXAFS analysis, and Tb-O-Ti bonds were directly observed.
    Observation of a peak at 378nm in the PLE spectra and the same trend of variation in the photoluminescence spectra of the host (broad band from 400nm to 700nm) and dopant (characteristic lines at 486nm, 543nm, 581nm, and 616nm) as the nitric acid concentration is changed in the sol-gel process are considered as strong indication of energy transfer between host and terbium.

    論文目錄 致謝 Ⅰ 摘要 Ⅱ 圖目錄 Ⅲ 表目錄 Ⅳ 論文目錄 Ⅴ 第一章 序論 1 1-1 二氧化鈦簡介................................................................................................................1 1-2 研究動機........................................................................................................................2 1-3 論文簡介........................................................................................................................3 第二章 理論與文獻回顧 4 2-1 溶膠凝膠法....................................................................................................................4 2-2 螢光基本原理..............................................................................................................10 第三章 樣品製備流程 16 3-1 主體晶格TiO2溶膠製備流程...................................................................................16 3-2 活化劑Tb3+摻雜.........................................................................................................16 3-3 凝膠的乾燥與鍛燒.....................................................................................................17 第四章 量測原理 19 4-1. XRD(X-ray diffraction) ................................................................................................19 4-2. TEM(transmission electron microscopy) .....................................................................20 4-3. EXAFS(extended X-ray absorption fine structure) ......................................................21 第五章 量測分析 24 5-1 XRD................................................................................................................................24 5-2 TEM................................................................................................................................30 5-3 EXAFS............................................................................................................................32 5-4 PL以及PLE...................................................................................................................39 第六章 結論 43 參考文獻 45 圖目錄 1-1. Anatase晶型..................................................................................................................2 1-2. rutile晶型.......................................................................................................................2 2-1-1. 親電性水解反應與親核性水解反應示意圖........................................................6 2-1-2. 水解與縮合反應速率與pH值關係圖..................................................................7 2-1-3. 親電性以及親核性水解反應路徑.........................................................................7 2-1-4. 水量/烷氧化物比例對反應速率的影響................................................................9 2-2-1電子躍遷的能量轉移路徑.......................................................................................11 2-2-2. Stoke shift機制示意圖.............................................................................................12 2-2-3. 光譜上Stoke shift造成激發光和螢光差別示意圖............................................12 2-2-4. 能量轉移示意圖.....................................................................................................14 2-2-5. Terbium能階譜圖與電子躍遷圖...........................................................................15 3-1. 樣品製備流程圖........................................................................................................18 4-1. 繞射條件示意圖........................................................................................................19 4-2. 電子顯微鏡與光學顯微鏡示意圖...........................................................................21 4-3. Titanium K-edge 吸收光譜.........................................................................................23 5-1-1. 不同硝酸濃度下Terbium 1%煅燒溫度500℃之XRD.......................................25 5-1-2. 不同硝酸濃度下Terbium 3%煅燒溫度500℃之XRD.......................................25 5-1-3. 不同硝酸濃度下Terbium 5%煅燒溫度500℃之XRD.......................................26 5-1-4. 各Tb濃度下不同硝酸濃度下煅燒500℃之顆粒大小......................................26 5-1-5. 不同Terbium濃度下煅燒溫度500℃之XRD.....................................................28 5-1-6. 不同Terbium濃度下煅燒溫度600℃之XRD.....................................................28 5-1-7. 不同Terbium濃度下煅燒溫度700℃之XRD.....................................................29 5-1-8. 不同Terbium濃度下煅燒溫度800℃之XRD.....................................................29 5-1-9. 不同Terbium濃度下煅燒溫度900℃之XRD.....................................................30 5-2-1. Tb濃度1%於500℃煅燒TEM...............................................................................31 5-2-2. Tb濃度3%於500℃煅燒TEM...............................................................................31 5-2-3. Tb濃度5%於500℃煅燒TEM...............................................................................32 5-3-1. 不同硝酸濃度、鍛燒溫度500℃之 weightedχfunction. ..................................33 5-3-2. 不同硝酸濃度、鍛燒溫度500℃之 Fourier transform ofχfunction.................34 5-3-3. 不同Terbium濃度、鍛燒溫度500℃之 weightedχfunction. ............................35 5-3-4. 不同Terbium濃度、鍛燒溫度500℃之 Fourier transform ofχfunction..........35 5-3-5. 不同Terbium濃度、鍛燒溫度500℃之 weightedχfunction...............................37 5-3-6. 不同Terbium濃度、鍛燒溫度500℃之 Fourier transform ofχfunction...........37 5-3-7. Terbium濃度1%、鍛燒溫度500℃之 weighted χ function...........................38 5-3-8. Terbium濃度1%、鍛燒溫度500℃之 Fourier transform ofχ function..........39 5-4-1. Tb濃度5%於500℃煅燒PL ...................................................................................41 5-4-2. Tb濃度5%於500℃煅燒PLE................................................................................41 5-4-2 Tb濃度5%不同硝酸濃度於500℃煅燒PL..........................................................42 表目錄 5-1-1. 各Tb濃度下不同硝酸濃度下煅燒500℃之顆粒大小.....................................27 5-3-1. 不同硝酸濃度EXAFS的fitting 參數結果..........................................................34 5-3-2. 不同Terbium濃度EXAFS的fitting 參數結果..................................................36 5-3-3. 文獻中二氧化鈦中鈦原子最相鄰的原子種類與鍵長、配位數......................36 5-3-4. 不同Terbium濃度EXAFS的fitting 參數結果....................................................38 5-3-5. Terbium濃度1%時EXAFS的fitting 參數結果....................................................39

    參考文獻
    [1]. A. Peng, E. Xie, C. Jia, R. Jiang, H. Lin, Mater. Lett. 59 (2005) 3866
    [2]. P.Y. Jia, J. Lin, M. Yu, J. Lumin. 122–123 (2007) 134
    [3]. B. Zou, L. Xiao, T. Li, J. Zhao, Z. Lai, S. Gu, Appl. Phys. Lett. 59 (1991) 1826.
    [4]. Y. Liu, R.O. Claus, J. Am. Chem. Soc. 119 (1997) 5273
    [5]. Montoncello F., Carotta M. C., Cavicchi B., Ferroni M., Giberti A. ,2003, J. Appl.
    [6]. H. Choi, J.H. Kima, S. Yi, B.K. Moon, J.H. Jeong, J. Alloy Comp. 408 (2006) 846
    [7]. F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, W.C.H. Choy, Appl. Catal A: General 285
    (2005) 181.
    [8]. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, J. Solid State Chem. 177 (2004) 3490.
    [9]. T. Peng, D. Zhao, H. Song, C. Yan, J. Mol. Catal. A: Chem. 238 (2005) 119.
    [10]. Q.-Z. Yan, X.-T. Su, Z.-Y. Huang, C.-C. Gea, J. Eur. Ceram. Soc. 26 2006) 915.
    [11]. From http://en.wikipedia.org/wiki/TiO2.
    [12]. Dolmatov Yu. D., 1969, Zhurnal Prikladnoi Khimii, Vol.42, No.8, p1725
    [13]. Jerman Z., 1996, Collect. Czech. Chem. Commun. 31, p3280
    [14]. Dislich H., 1971, Glastechn. Ber. 44, p1
    [15]. Dislich H., 1971, Angew. Chem. 10, p363
    [16]. Aelion R., Loebel A., Eirich F., 1950, Recueil Travaux Chimiques 69, p61
    [17]. Aelion R., Loebel A., Eirich F., 1950, J. Am. Chem. Soc. 72, p5705-5712
    [18]. Livage J., Aegeter M. A., Jafelicci M. Jr., Souza D. F., Zanotto E. D. , 1989,
    “Sol-Gel Science and Technology”, Singapore, World Scientific Publication,
    p103-152
    [19]. From http://cheminfo.chemi.muni.cz/materials/InorgMater/sol_gel.pdf
    [20]. Sakka S., Kamiya K., 1980, J. Non-Cryst. Solids 42, p403
    [21]. K. Kamiya, K. Tanimoto, Yoko T., 1986, J. Mater. Sci. Lett. 5, p402
    [22]. P. J. Chen. ”Preparation and X-Ray Analysis of Nanocrystal Materials”, 清大碩
    士論文
    [23].R. K. Her , 1978,” The Chemistry of Silica”, Wiley
    [24]. Yoldas B. E., 1986, J. Mater. Sci 21, p1087
    [25]. Sakka S., Kamiya K., 1982, J. Non-Cryst. Solids 48, p31
    [26]. Sakka S., Brinker C. J., Clark D. E., Ullrich D. R., 1984, “Better Ceramics Through
    Chemistry”, New York, Elsevier-North Holland, p91
    [27]. Klein, L.C. Ann. Rev. Mater. Sci., 1985, 15, 227-248
    [28]. Erwin B. M., Colby R. H., 2002, J. Non-Crystalline Solids ,Vol.- 70 - 307-310,
    p225-231
    [29]. Colby R. H., 2000, Phys. Rev. E 61, p1783-1792

    [30]. Colby R. H., Zheng X., Rafailovich M. H., Sokolov J., Peiffer D. G., chwarz S. A.,
    hemechny Y., Nguyen D., 1998, Phys. Rev. Lett. 81, p3876-3879.
    [31]. 劉如熹, 劉宇恆., 2006 ,“發光二極體用氧氮螢光粉介紹”
    [32]. C. R. Ronda., 2008,“Luminescence:From Theory to Applications”.
    [33]. From www.advancedaquarist.com/2006/9/aafeature stoke.
    [34]. G. Wakefield , H.A. Keron , P.J. Dobson , J.L. Hutchison., Journal of Physics and
    Chemistry of Solids 60 (1999) 503.
    [35]. From http://www.lab.anhb.uwa.edu.au/hb313/main_pages/timetable/Pracs/
    electron%20microscopm%20LF1.htm.
    [36]. Saylers D. E., Sterns E. A., 1971, Phys. Rev. Lett. 27, p1204
    [37]. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of
    Sol-Gel Processing (Academic Press, Inc.: New York, 1990).
    [38]. Q.G. Zeng et al. / Journal of Luminescence 118 (2006) 301–307
    [39]. G. Mirth and J.A. Lercher, J. Catal., 132 (1991) 244.
    [40]. Malet P, Capitan MJ, Centero MA, Odriozola JA, Carrizosa I.J Chem Soc Faraday
    Trans 1994;90:2783.
    [41]. Schwartz V., Mullins D. R. ,Yan W., Zhu H., Dai S., Overbury S. H., 2007, J. Phys.
    Chem. C 111, p17322-17332
    [42]. Y. C. Zhu, C. X. Ding., J. Solid State Chemistry 145 (1999) 711.
    [43]. Tang Q., Shen J., Zhou W., Zhang W., Yu W., Qian Y., 2003, J. Mater. Chem. 13,
    p3103-3106.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE