簡易檢索 / 詳目顯示

研究生: 王博生
Po-Shen Wang
論文名稱: 以噴墨製程製作電致發光高分子薄膜之研究
Studies on Electroluminescent Polymer Thin Films prepared by inkjet printing process
指導教授: 陳壽安
Show-An Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 有機發光二極體噴墨製程表面處理
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於inkjet printing 製程在高分子發光顯示器(Polymer light emitting display, PLED)的製作上比spin-coating 製程經濟,例如,節省材料成本。目前文獻上對於inkjet printing的相關報導很少。因此,本文的目的即為探討如何以此製程獲得均勻膜厚方法。本文分三部份來探討此製程相關問題:(1) 溶劑之選用及搭配限制, (2) 選用good solvent/nonsolvent 之組合可能產生gelation 現象的討論, (3) 表面處理對printing的影響。

    為了了解printing ink 對成膜後之膜厚分布的影響,我們利用good
    solvent, poor solvent 及nonsolvent 來添加到高分子溶液當成第二溶劑,配置成之printing ink,利用inkjet printing 方式在基材表面成膜,並使用3D共聚焦顯微鏡來觀察添加這些溶劑對膜厚分布之影響。當高分子溶液添加了適當含量的poor solvent 及nonsolvent 都可以有效的改善膜厚不均的現象。然而,添加nonsolvent 卻有另一個限制,其高分子溶液會在特定條件下形成gel。在不考慮膜厚的情形下,也可以利用濃度之改變來得到均勻之膜厚。
    在poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene Vinylene] (MEHPPV)溶液(溶劑為DCB)中添加nonsolvent 烷類,經由一段時間的靜置之後會形成gel 並可觀察到aggregates emission 的成長。這個形成gel 的溶液在靜置13 小時之後會形成完全無法流動的gel,可以在加熱攪拌之後恢復流動。我們發現MEH-PPV溶液的黏度會隨著nonane的添加達到最低(30vol%),在此之後,黏度則隨著nonane 的增加而大幅提高。因此,我們認為gel 的產生是由於在nonane 存在下MEH-PPV 的側鏈相互間形成interaction,而使得分子間的物理交連的發生所致。而隨著gel 產生的aggregates 則是屬於分子內之aggregates,這是因為MEH-PPV 之主鏈在nonane 的存在下會形成蜷縮的構形,這可以由添加少量之nonane 之後,高分子溶液的黏度降低來證實。添加不同的烷類也有相關的測試,不過只有在線性碳鏈高於9 個碳時才會產生完全無法流動的gel。

    我們在一個特別的情形下觀察到相分離的產生,這是由於高分子溶液
    (polyethylhexylfluorene/polyfluroene (PFEH/PF)或是MEH-PPV 溶液,溶劑組成30% dicholorbenzene, DCB, 70% butyl acetate, BA)經由噴墨的方式在一個特定地基材表面成膜而觀察到的。不同功率的CHF3 plasma可以在ITO表面製作出不同表面性質的基材。當混合溶劑中的BA 在基材表面有遠小於DCB 的接觸角,則會產生相分離的現象。而這種由於表面能量產生的相分離現象在噴墨製程上則是第一次被觀察到。


    摘要(中文)·····································································································I 摘要(英文)··································································································III 目錄···················································································································VI 圖目錄·················································································································X 表目錄··········································································································XVII 第一章、緒論 ............................................................................................1 第二章、文獻回顧 ....................................................................................3 2-1 噴墨技術在PLED應用的發展 .........................................................3 2-2 高分子溶液之物理性質與噴墨技術的關聯性 ..................................6 2-3 高分子溶液之流變性質與噴墨技術的關聯性 ..................................9 2-4 噴墨技術相關製程討論 .....................................................................12 2-5 文獻分析 ...........................................................................................23 第三章、實驗內容 ..................................................................................24 3-1 藥品 ..................................................................................................24 3-2 高分子溶液製備 ................................................................................24 3-2-1 使用之高分子材料 ........................................................................24 VII 3-2-2 單一溶劑之高分子溶液 ................................................................24 3-2-3 混合溶劑之高分子溶液 ................................................................25 3-2-4 高分子溶液之gelation現象 ..........................................................25 3-3 儀器設備 ...........................................................................................25 3-3-1 黏度計(Viscometer) .................................................................25 3-3-2 噴墨設備(ink-jet printing equipment) ....................................26 3-3-3 3D 共聚焦顯微鏡(3D confocal microscope) ............................27 3-3-4 接觸角量測儀(contact angle meter) ........................................27 3-3-5 紫外線-可見光光譜儀(Ultraviolet-visible spectroscopy, UV-Vis) .....................................................................................27 3-3-6 螢光光譜(Photoluminescence, spectroscopy, PL) ..................28 3-4 表面處理 ...........................................................................................28 3-4-1 ITO 玻璃基板之清潔 .....................................................................28 3-4-2 CF4電漿處理 ..................................................................................28 3-4-3 CFx電漿處理 ..................................................................................29 第四章、以噴墨方式製作均勻之高分子膜所需考量的因素 ................30 4-1 前言 ..................................................................................................30 4-2 添加第二溶劑之效應 .......................................................................32 4-3 高分子分子量的影響 .......................................................................39 VIII 4-4 高分子在溶液之濃度對成膜後膜表面平整度的影響 .....................42 4-5 Drop size effect ...............................................................................46 4-6 結論 ..................................................................................................48 第五章、凝膠化高分子溶液之現象討論 ...............................................49 5-1 前言 ..................................................................................................49 5-2 gel之產生及其發光物種之討論 ....................................................50 5-3 Physical cross-linking and the intra-chain aggregation. ..............58 5-4 Effect of chain length and structure of poor solvent on gelation. 62 5-5 結論 ..................................................................................................64 第六章、表面處理對噴墨製程的影響 ...................................................66 6-1 前言 ..................................................................................................66 6-2 CF4 plasma 表面處理 ........................................................................66 6-3 光阻壁形狀之影響與表面潤濕情形 ................................................68 6-4 溶劑表面能量匹配所引發之相分離現象 ........................................72 6-4-1 分子量對相分離的影響 ................................................................76 6-4-2 溶液與基材表面之接觸角的影響 .................................................78 6-5 Line printing on ITO substrate ........................................................82 6-5-1 Line printing with photoresist bank .............................................82 6-5-2 Line printing without photoresist bank ........................................86 IX 6-6 結論 ..................................................................................................94 第七章 總結與未來展望 .........................................................................96 本研究之原創性工作 ...............................................................................98 參考文獻 ..................................................................................................99 著作目錄 ................................................................................................103

    1. P. C. Duineveld, M. M. de Kok, M. Buechel, A. H. Sempel, K. A. H. Mutsaers, P.
    Van de Weijer, I. G. J. Camps, T. J. M. van den Biggelaar, J.-E. J. M. Rubingh, E.
    I. Haskal, Proc. SPIE, 4464 (2002), 59.
    2. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, J. C. Sturm, Appl. Phys. Lett., 72
    (1998), 519.
    3. J. Bharathan, Y. Yang, Appl. Phys. Lett.,72 (1998), 2660.
    4. S. C. Chang, J. Bharathan, Y. Yang, R. Helgeson, F. Wudl, M. B. Ramey, J. R.
    Reynolds, Appl. Phys. Lett., 73 (1998), 2561.
    5. Y. Yang, S. Chang, J. Bharathan, J. Liu, J. Mater. Sci.: Mater. Electron., 11
    (2000), 89.
    6. T. Shimoda, S. Kanbe, H. Kobayahi, S. Seki, H. Kiguchi, I. Yudasaka, M.
    Kimura, S. Miyashita, R. H. Friend, J. H. Burroughes, C. R. Towns, Proc. 19th Int.
    Display Res. Conf., San Jose 1999, Society for Information Display, San Jose,
    CA (1999), p.376.
    7. T. Shimoda, M. Kimura, S. Seki, H. Kobayahi, S. Kanbe, S. Miyashita, R. H.
    Friend, J. H. Burroughes, C. R. Towns, I. S. Millard, Tech. Dig-Int. Electron.
    Devices Meet., 99 (1999), 107.
    8. H. Kobayahi, S. Kanbe, S. Seki, H. Kigchi, M. Kimura, I. Yudasaka, S. Miyathita,
    T. Shimoda, C. R. Towns, J. R. Burroughes, R. H. Friend, Synth. Met., 111-112
    (2000), 125.
    9. P. C. Duineveld, J. Fluid Mech., 477 (2003), 175.
    10. N. Kamiura, K. Mametsuka, J. Hanari, K. Yamamoto, H. Sakurai, H. Hirayama,
    M. Kobayashi, T. Nakazono, Proc. AsiaDisplay/IDW, Nagoya 2001, Society for
    Information Display, San Jose, CA (2001), p. 1403.
    11. T. funamoto, Y. Matsueda, O. Yokoyama, A. Tsuda, H. Takeshita, S. Miyashita,
    Proc. 22nd Int. Display Res. Conf., Boston 2002, society for Information Display,
    San Jose, CA (2002), p. 899.
    12. A. Giraldo, P. C. Duineveld, M. T. Jahnson, H. Lifka, J.-E. J. M. Rubingh, M. J.
    Childs, D. A. Fish, D. S. George, S. D. Godfrey, D. J. McCulloch, W. A. Steer, M.
    Trainor, N. D. Young, I. M. Hunter, Proc. 7th Asian Symp. Information Display
    (ASID2002), Singapore 2002, Society for Information Display, San Jose, CA
    (2002), p. 43.
    100
    13. E. I. Haskal, M. Buchel, J. F. Dijksman, P. C. Duineveld, E. A. Meulenkamp, C.
    A. H. A. Mutsaers, A. H. Sempel, P. Snijder, E. I. Vulto, P. van der Weijer, S. P. H.
    M. Winter, Proceedings of the 22nd International Display Research Conference,
    Boston 2002, Society for Information Display Research Conference, Boston
    2002, Society for Information Display, San Jose, CA (2002), p. 776.
    14. P. J. Lyon, J. C. Carter, C. J. Bright, M. Cacheiro, WO Patent 02/069119A1,
    2002.
    15. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten,
    Nature, 389 (1997), 827.
    16. J. D. Meyer, A. A. Bazilevsky, A. N. Rozkhov, IS&T NIP13:1997 Int. Conf. on
    Digital Printing Technologies, Vol. 13 Society for Imaging Science and
    Technology, Springfield, MA (1997), p. 675.
    17. B. J. de Gans, E. Kazazcioglu, W. Meyer, U. S. Schubert, Macromol. Rapid
    Commun., 25 (2004), 292.
    18. F. W. Kroesser, S. Middleman, AIChE J., 15 (1969), 383.
    19. M. Goldin, J. Yerushalmi, R. Pfeffer, R. Shinnar, J. Fluid Mech., 38 (1969), 689.
    20. M. Gordon, J. Yerushalmi, R. Shinnar, Trans. Soc. Rheol., 17 (1973), 303.
    21. C. A. Bruce, IBM J. Res. Dev., 120 (1976), 258.
    22. R. P. Mun, J. A. Byars, D. V. Boger, J. Non-Newtonian Fluid Mech., 74 (1998),
    285.
    23. Y. Christanti, L. M. Walker, J. Rheol., 46 (2002), 733.
    24. M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Oxford University
    Press, Oxford (1986), p. 103.
    25. J. J. Cooper-white, J. E. Fagan, V. Tirtaatmadja, D. R. Lester, D. V. Boger, J.
    Non-Newtonian Fluid Mech., 106 (2002), 29.
    26. Y. Amarouchene, D. Bonn, J. Meunier, H. Kellay, Phys. Rev. Lett., 86 (2001),
    3558.
    27. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids,
    Vol. 1: Fluid Mechanics, John Wiley & Sons, (1987).
    28. A. G. Emslie, J. Appl. Phys., 73 (1958), 585.
    101
    29. P. S. Ayyaswamy, Adv. Heat Transfer, 26 (1995), 1.
    30. B. L. Scheller and D. W. Bousfield, AIChe Journal, 41 (1995), 1357.
    31. K. Y. Peng, S. A. Chen, W. S. Fann, J. Am. Chem. Soc., 123 (2001), 11388 –
    11397.
    32. C.-C. Hsiao; C.-H. Chang; T.-H. Jen; M.-C. Hung; S.-A. Chen; Appl. Phys. Lett.,
    88 (2006), 033512.
    33. Platé, N. A. In Comb-Shaped Polymers And Liquid Crystals; Shibaev, V. P.;
    Plenum: New York, (1987); p 173 – 190.
    34. R. Traiphol, P. Sanguansat, T. Srikhirin, T. Kerdcharoen, T. Osotchan,
    Macromolecules, 39 (2006), 1165 – 1172.
    35. R. Traiphol, N. Charoenthai, T. Srikhirin, T. Kerdcharoen, T. Osotchan, T.
    Maturos, Polymer, 48 (2007), 813.
    36. H. Kajii, D. Kasama, Y. Ohmori, Jpn. J. Appl. Phys., 47 (2008), 3152.
    37. V. V. Korshak, N. I. Bekasova, N. G. Komarova, L. G. Komarova, V. V. Vagin,
    Acta Polym., 40 (1998), 439.
    38. M. Knaapila, F. B. Dias, V. M. Garamus, L. Alma´sy, M. Torkkeli, K. Leppa1nen,
    F. Galbrecht, E. Preis, H. D. Burrows, U. Scherf, A. P. Monkman,
    Macromolecules, 40 (2007), 9398.
    39. (a) A. Ajayaghosh, V. K. Praveen, C. Vijayakumar, Chem. Soc. Rev., 37 (2008),
    109. (b) A. Ajayaghosh, V. K. Praveen, S. Srinivasan, R. Varghese, Adv. Mater.,
    19 (2007), 411. (c) A. Ajayaghosh, C. Vijayakumar, V. K. Praveen, S. S. Babu, R.
    Varghese, J. Am. Chem. Soc., 128 (2006), 7174. (d) A. Ajayaghosh, S. J. George,
    J. Am. Chem. Soc., 123 (2001), 5148. (e) T. Cardolaccia, Y. Li, K. S. Schanze, J.
    Am. Chem. Soc., 130 (2008), 2535. (f) A. P. H. J. Schenning, P. Jonkheijm, E.
    Peeters, E. W. Meijer, J. Am. Chem. Soc., 123 (2001), 409. (g) F. J. M. Hoeben, P.
    Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, J. Chem. Rev., 105 (2005), 1491.
    (h) P. Jonkheijm, P. V. D. Schoot, A. P. H. J. Schenning, E. W. Meijer, Science,
    313 (2006), 80.
    40. T. W. Hagler, K. Pakbaz, K. F. Voss, A. J. Heeger, Phy. Rev. B, 44 (1991), 8652.
    41. S. H. Chen, A. C. Su, C. S. Chang, H. L. Chen, D. L. Ho, C. S. Tsao, K. Y. Peng,
    S. A. Chen, Langmuir, 20 (2004), 8909 – 8915.
    42. S. Quan, F. Teng, Z. Xu, L. Qian, Y. Hou, Y. Wang, X. Xu, Eur. Polym. J., 42
    (2006), 228 – 233.
    102
    43. S. A. Ahmed, Z.-W. Zang, K.-M. Yoo, M. A. Ali, R. R. Alfano, Applied Optics, ,
    33 (1994), 2746.
    44. N. Kiriy, E. Jähne, A. Kiriy, H. Alder, J. Macromol. Symp., 210 (2004), 359 –
    367.
    45. T. Q. Nguyen, V. Doan, B. J. Schwartz, J. Chem. Phys., 110 (1999), 4068 – 4078.
    46. H. Zhang, X. Lua, Y. Li, X. Ai, X. Zhang, G. Yang, J. Photochem. Photobiol. A:
    Chem., 147 (2002), 15 – 23.
    47. L. G. Wade, In Organic Chemistry; Prentice Hall: New Jersey, (1991); p 103 –
    106.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE