簡易檢索 / 詳目顯示

研究生: 許嘉良
Hsu, Chia-Liang
論文名稱: 藉由晶片透明導電層設計與走道奈米結構提升LED出光效率
LED Efficiency Enhancement via Transparent Conducting Layer and Street Nanotexturing
指導教授: 葉哲良
Yeh, J. Andrew
口試委員: 張守進
Chang, Shou-Jin
王培仁
Wang, Pei-Jen
葉孟考
Yeh, Meng-Kao
戴慶良
Dai, Ching-Liang
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 115
中文關鍵詞: 透明導電層LED石墨烯歐姆接觸奈米圖形化
外文關鍵詞: Transparent conductive layer, current spreading
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LED的技術發展突飛猛進,隨之應用也不斷開展,造就產業大躍進,由於應用的不同需求,技術也應運而生。
    透明導電層(Transparent Conductivity Layer;TCL)是LED在電傳導與光傳導的一個關鍵設計,為了減低電傳過程的損失,我們使用金屬作為電傳的渠道,然而金屬層會造成光吸收與光屏蔽,所以TCL作為短區域的電傳導層可以兼顧光電傳導的需求,然而因折射率差異造成介面光傳導損失則是另一個挑戰,這項工作的主要焦點之一是研究GaN LED的表面中TCL的混合結構。使用可能的材料和結構的組合來產出不同特性的TCL,其中發現石墨烯是最好的選擇之一。研究中,我們還將現有LED在不改變既有的製造技術和磊晶結構下,輸出功率提高了18%。
    一般晶片設計因為切割走道的預留,損失部分的發光面積,通過對未被利用的n-GaN層的走道,進行納米加工來提高輸出功率,證實了增強的光提取是來自於原本沒有光分佈的空間,這項研究提供了現有LED在光功率提升的一種新方法。


    This work aims for a high efficiency LED using a novel transparent conductive layer and new approach for texturing. For both the light extraction and current spreading consideration, we have to design not only material base but also the surface condition. One of the primary focuses of this work is to study the hybrid structure of TCO in textured surface of InGaN based LED. Different TCO is examined with possible combinations of textured and structures where graphene was found to be one of the best choices. In this study, we also enhanced the output power of conventional LEDs by 18% without alterations to the existing fabrication techniques and to the multi-quantum well junction. The output power is improved by nanotexturing the street of the n-GaN layer that was unexploited, for the enhancement of the optical or electrical properties. We observed similar light output patterns and I-V characteristics for LEDs with and without street nanotexturing, confirming that the enhanced light extraction has been achieved without a change in the spatial distribution of light. This study provides a new approach for the output power enhancement of all types of existing LEDs.

    Contents Abstract II 中文摘要 III Acknowledgement IV Contents V List of figures VIII List of tables XVI List of symbols XVII Chapter 1: Introduction 1 1.1. Background 3 1.2. Development of white light LED 4 1.3. Motivation and Objective 9 Chapter 2: Theory 10 2.1. LED Introduction 10 2.1.1 LED structure 12 2.1.2 Multiple Quantum Well Structure 15 2.1.3 Electron Blocking Layer 16 2.1.4 Current Blocking Layer 17 2.1.5 Light Extraction Efficiency 17 2.1.6 White LED Efficiency 18 2.1.7 Internal Quantum Efficiency 18 2.1.8 LED overview 20 2.1.9 Optical requirement 24 2.1.10 Electrical requirement 26 2.2. Transparent Conductors overview 27 2.2.1 Material review 27 2.2.2 Structure review 42 2.2.3 Graphene 52 Chapter 3: Design and Experiments 59 3.1. Measurement of electrical properties 59 3.2. Sheet resistance measurement 60 3.3. Antireflection and Transparency measurement 62 3.4. Resistivity measurement 64 Chapter 4: Result and Discussion 66 4.1 Textured ITO with difference thickness 66 4.2 Selection of metal layer for improved sheet resistance 76 4.3 ALD and GZO alternatives for ITO 83 4.4 Graphene layer deposition for short wavelength LED 86 4.5 LED efficiency improvement by street nanotexturing 90 Chapter 5: Conclusion and Future Work 97 Appendix 99 A.1 Keithley 2430 unit for current/resistance/voltage measurement 99 A.2 RM3000 for sheet resistance measurement 100 A.3 U4001, Hitachi Inc. for transparency measurement 101 A.4 Scanning Electron Microscopy using Carl Zeizz Ultra 55 102 A.5 Hall measurement using HL5520 103 References 104

    References
    [1] G. Nocchi, "World led lighting markets (2015 update)," 2015.
    [2] X. B. Zhu, Q. Zhu, H. Wu, and C. Chen, "Optical design of LED-based automotive headlamps," Optics and Laser Technology, vol. 45, pp. 262-266, Feb 2013.
    [3] The cree led bulb standard a-type. Available: http://creebulb.com/products/standard-a-type Last access : 30 Nov 2016
    [4] Philips led lights. Available: http://www.philips.ca/c-m-li/LED-lights Last access : 30 Nov 2016
    [5] Osram applications. Available: http://www.osram.com/osram_com/applications/home/index.jsp Last access : 30 Nov 2016
    [6] Led grow lights for greenhouses. Available: http://www.illumitex.com/greenhouse-led-lights Last access : 30 Nov 2016
    [7] Led grow lights and lighting solutions. Available: http://www.lumigrow.com/products/ Last access : 30 Nov 2016
    [8] Samsung business led. Available: http://www.samsung.com/global/business/led/ Last access : 30 Nov 2016
    [9] D. R. Opel, E. Hagstrom, A. K. Pace, K. Sisto, S. A. Hirano-Ali, S. Desai, et al., "Light-emitting Diodes: A Brief Review and Clinical Experience," The Journal of clinical and aesthetic dermatology, vol. 8, p. 36, 2015.
    [10] "Energy star qualied light bulbs - 2006 partner resource guide," 2006.
    [11] W. R. Gifford, M. L. Goldberg, P. M. Tanimoto, D. R. Celnicker, and M. E. Poplawski, "Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates," Pacific Northwest National Laboratory (PNNL), Richland, WA (US)2012.
    [12] A. N. Krasnov, "Electroluminescent displays: history and lessons learned," Displays, vol. 24, pp. 73-79, Aug 2003.
    [13] S. Nakamura, M. Senoh, and T. Mukai, "P-Gan/N-Ingan/N-Gan Double-Heterostructure Blue-Light-Emitting Diodes," Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 32, pp. L8-L11, Jan 15 1993.
    [14] N. Bochkareva, Y. T. Rebane, and Y. G. Shreter, "Efficiency droop in GaN LEDs at high current densities: Tunneling leakage currents and incomplete lateral carrier localization in InGaN/GaN quantum wells," Semiconductors, vol. 48, pp. 1079-1087, 2014.
    [15] A. Dennington. (2008). Multi-die packages versus multiple single die power leds. Available: http://www.electronicsweekly.com/news/products/LED/multi-die-packages-versus-multiple-single-die-power-LEDs-2008-06/
    [16] Report of DOE 2012. Available: https://energy.gov/sites/prod/files/2014/06/f16/2012_Occupational_Radiation_Exposure_Report.pdf
    [17] A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, et al., "GaN light-emitting diodes with Archimedean lattice photonic crystals," Applied Physics Letters, vol. 88, Feb 13 2006.
    [18] C. R. Ronda, Luminescence: from theory to applications: John Wiley & Sons, 2007.
    [19] Led - infrared 950nm. Available: http://www.sparkfun.com/products/9349 Last access : 30 Nov 2016
    [20] P. Ball. LEDs get on the right wavelength. Available: http://www.nature.com/news/2003/030507/full/news030505-2.html Last access : 30 Nov 2016
    [21] M. Cullen and J. M. P. Mearns, "Coulometric Determination of Arsenic in Gallium-Arsenide Crystal Wafers," Analytica Chimica Acta, vol. 277, pp. 113-117, May 15 1993.
    [22] P. B. Hart, "Green and Yellow Emitting Devices in Vapor-Grown Gallium-Phosphide," Proceedings of the Ieee, vol. 61, pp. 880-884, 1973.
    [23] S. J. Chang, T. K. Lin, Y. Z. Chiou, B. R. Huang, S. P. Chang, C. M. Chang, et al., "ZnSe based white light emitting diode on homoepitaxial ZnSe substrate," Iet Optoelectronics, vol. 1, pp. 39-41, Feb 2007.
    [24] S. Nakamura, T. Mukai, and M. Senoh, "High-Brightness Ingan/Algan Double-Heterostructure Blue-Green-Light-Emitting Diodes," Journal of Applied Physics, vol. 76, pp. 8189-8191, Dec 15 1994.
    [25] M. Weyers, "Substrates for GaN Technology," ed: Ferninand-Braun-Insitut, Berlin, 2005.
    [26] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, pp. 353-355, 1986.
    [27] P. Mottier, LED for lighting applications vol. 134: John Wiley & Sons, 2010.
    [28] S. Nakamura, T. Mukai, and M. Senoh, "High-power GaN pn junction blue-light-emitting diodes," Japanese Journal of Applied Physics, vol. 30, p. L1998, 1991.
    [29] S. D. Lester, M. J. Ludowise, K. P. Killeen, B. H. Perez, J. N. Miller, and S. D. Rosner, "High-efficiency InGaN MQW blue and green LEDs," Journal of Crystal Growth, vol. 189, pp. 786-789, Jun 1998.
    [30] Z. X. Chen, W. J. Liu, W. Wan, G. Y. Chen, Y. Z. Chen, B. J. Zhang, et al., "Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode," Journal of Nanomaterials, 2016.
    [31] K. Zhao, X. F. Yang, B. Xu, D. Li, C. D. Wang, and L. F. Feng, "Well Thickness Dependence of the Internal Quantum Efficiency and Carrier Concentration in GaN-Based Multiple Quantum Well Light-Emitting Diodes," Journal of Electronic Materials, vol. 45, pp. 786-790, Jan 2016.
    [32] Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, "Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers," Applied Physics Letters, vol. 95, Jul 6 2009.
    [33] C. S. Xia, Z. M. S. Li, and Y. Sheng, "On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes," Applied Physics Letters, vol. 103, Dec 2 2013.
    [34] J. Panfeng, L. Naixin, W. Tongbo, L. Zhe, L. Hongxi, W. Junxi, et al., "Improvement of the efficiency droop of GaN-LEDs using an AlGaN/GaN superlattice insertion layer," Journal of Semiconductors, vol. 32, p. 114006, 2011.
    [35] N. M. Shrestha, Y. Li, and E. Y. Chang, "Optimal design of the multiple-apertures-GaN-based vertical HEMTs with $$\hbox {SiO}_{2}$$ SiO 2 current blocking layer," Journal of Computational Electronics, vol. 15, pp. 154-162, 2016.
    [36] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Prospects for LED lighting," Nature Photonics, vol. 3, pp. 180-182, 2009.
    [37] R. N. Hall, "Electron-hole recombination in germanium," Physical Review, vol. 87, p. 387, 1952.
    [38] W. Shockley and W. Read Jr, "Statistics of the recombinations of holes and electrons," Physical review, vol. 87, p. 835, 1952.
    [39] A. Beattie and P. Landsberg, "Auger effect in semiconductors," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1959, pp. 16-29.
    [40] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, et al., "High-power AlGaInN flip-chip light-emitting diodes," Applied Physics Letters, vol. 78, pp. 3379-3381, May 28 2001.
    [41] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, et al., "Illumination with solid state lighting technology," Ieee Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 310-320, Mar-Apr 2002.
    [42] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, M. Teepe, and N. M. Johnson, "Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates," Applied Physics Letters, vol. 78, pp. 1198-1200, Feb 26 2001.
    [43] D. S. Wu, X. J. Zhang, Y. Dong, X. J. Zhou, and X. L. Tian, "The effect of ultraviolet light on one-pulse process Pockels cell gas discharge - art. no. 62870H," Optical Technologies for Arming, Safing, Fuzing, and Firing II, vol. 6287, pp. H2870-H2870, 2006.
    [44] W. S. Wong, Y. Cho, E. R. Weber, T. Sands, K. M. Yu, J. Kruger, et al., "Structural and optical quality of GaN/metal/Si heterostructures fabricated by excimer laser lift-off," Applied Physics Letters, vol. 75, pp. 1887-1889, Sep 27 1999.
    [45] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, et al., "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Applied Physics Letters, vol. 75, pp. 1360-1362, Sep 6 1999.
    [46] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, et al., "InxGa1-xN light emitting diodes on Si substrates fabricated by Pd-In metal bonding and laser lift-off," Applied Physics Letters, vol. 77, pp. 2822-2824, Oct 30 2000.
    [47] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, "30-Percent External Quantum Efficiency from Surface Textured, Thin-Film Light-Emitting-Diodes," Applied Physics Letters, vol. 63, pp. 2174-2176, Oct 18 1993.
    [48] V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, et al., "High brightness LEDs for general lighting applications using the new ThinGaN (TM)-technology," Physica Status Solidi a-Applications and Materials Science, vol. 201, pp. 2736-2739, Sep 2004.
    [49] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Applied Physics Letters, vol. 86, May 30 2005.
    [50] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei, et al., "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography," Applied Physics Letters, vol. 91, Jul 2 2007.
    [51] Y. Gao, I. Ben-Yaacov, U. K. Mishra, and E. L. Hu, "Optimization of AlGaN/GaN current aperture vertical electron transistor (CAVET) fabricated by photoelectrochemical wet etching," Journal of Applied Physics, vol. 96, pp. 6925-6927, Dec 1 2004.
    [52] S.-J. Chang, Y. Jhou, Y. Lin, S.-L. Wu, C. Chen, T.-C. Wen, et al., "GaN-based MSM photodetectors prepared on patterned sapphire substrates," IEEE Photon. Technol. Lett, vol. 20, pp. 1866-1868, 2008.
    [53] W. N. Carr and G. E. Pittman, "One-Watt Gaas P-N Junction Infrared Source," Applied Physics Letters, vol. 3, pp. 173-175, 1963.
    [54] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, et al., "High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting > 50% external quantum efficiency," Applied Physics Letters, vol. 75, pp. 2365-2367, Oct 18 1999.
    [55] S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, "High extraction efficiency of spontaneous emission from slabs of photonic crystals," Physical Review Letters, vol. 78, pp. 3294-3297, Apr 28 1997.
    [56] H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, "Enhancement of light extraction from two-dimensional photonic crystal slab structures," Ieee Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 231-237, Mar-Apr 2002.
    [57] J. K. Sheu, I. H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, "Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads," Applied Physics Letters, vol. 93, Sep 8 2008.
    [58] J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla, and R. Guo, "Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition," Applied Physics Letters, vol. 88, Mar 27 2006.
    [59] J. K. Kim, J. Q. Xi, H. Luo, E. F. Schubert, J. Cho, C. Sone, et al., "Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having NiZn/Ag microcontacts," Applied Physics Letters, vol. 89, Oct 2 2006.
    [60] X. Guo and E. F. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of Applied Physics, vol. 90, pp. 4191-4195, Oct 15 2001.
    [61] L. Zhou, W. Lanford, A. T. Ping, I. Adesida, J. W. Yang, and A. Khan, "Low resistance Ti/Pt/Au ohmic contacts to p-type GaN," Applied Physics Letters, vol. 76, pp. 3451-3453, Jun 5 2000.
    [62] Y. J. Liu, C. H. Yen, L. Y. Chen, T. H. Tsai, T. Y. Tsai, and W. C. Liu, "On a GaN-Based Light-Emitting Diode With a p-GaN/i-InGaN Superlattice Structure," Ieee Electron Device Letters, vol. 30, pp. 1149-1151, Nov 2009.
    [63] D. Mistele, F. Fedler, H. Klausing, T. Rotter, J. Stemmer, O. K. Semchinova, et al., "Investigation of Ni/Au-contacts on p-GaN annealed in different atmospheres," Journal of Crystal Growth, vol. 230, pp. 564-568, Sep 2001.
    [64] J. Yan, M. J. Kappers, Z. H. Barber, and C. J. Humphreys, "Effects of oxygen plasma treatments on the formation of ohmic contacts to GaN," Applied Surface Science, vol. 234, pp. 328-332, Jul 15 2004.
    [65] R. Wenzel, G. G. Fischer, and R. Schmid-Fetzer, "Ohmic contacts on p-GaN (Part II): impact of semiconductor fabrication and surface treatment," Materials Science in Semiconductor Processing, vol. 4, pp. 367-371, Aug 2001.
    [66] R. Wenzel, G. G. Fischer, and R. Schmid-Fetzer, "Ohmic contacts on p-GaN (Part I): investigation of different contact metals and their thermal treatment," Materials Science in Semiconductor Processing, vol. 4, pp. 357-365, Aug 2001.
    [67] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, et al., "High-transparency Ni/Au ohmic contact to p-type GaN," Applied Physics Letters, vol. 74, pp. 2340-2342, Apr 19 1999.
    [68] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, "Low-resistance ohmic contacts to p-type GaN," Applied Physics Letters, vol. 74, pp. 1275-1277, Mar 1 1999.
    [69] T. Minami, H. Sonohara, T. Kakumu, and S. Takata, "Highly Transparent and Conductive Zn2in2o5 Thin-Films Prepared by Rf Magnetron Sputtering," Japanese Journal of Applied Physics Part 2-Letters, vol. 34, pp. L971-L974, Aug 1 1995.
    [70] D. S. Ginley and J. D. Perkins, "Transparent Conductors," in Handbook of Transparent Conductors, D. S. Ginley, Ed., ed Boston, MA: Springer US, 2011, pp. 1-25.
    [71] R. G. Gordon, "Criteria for choosing transparent conductors," Mrs Bulletin, vol. 25, pp. 52-57, Aug 2000.
    [72] O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, "High quality ITO thin films grown by dc and RF sputtering without oxygen," Journal of Physics D-Applied Physics, vol. 43, Feb 10 2010.
    [73] E. Elangovan and K. Ramamurthi, "A study on low cost-high conducting fluorine and antimony-doped tin oxide thin films," Applied Surface Science, vol. 249, pp. 183-196, Aug 15 2005.
    [74] N. Romeo, A. Bosio, V. Canevari, M. Terheggen, and L. V. Roca, "Comparison of different conducting oxides as substrates for CdS/CdTe thin film solar cells," Thin Solid Films, vol. 431, pp. 364-368, May 1 2003.
    [75] S. Parthiban, K. Ramamurthi, E. Elangovan, R. Martins, and E. Fortunato, "Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility," Applied Physics Letters, vol. 94, May 25 2009.
    [76] H. Hara, T. Shiro, and T. Yatabe, "Optimization and properties of Zn doped indium oxide films on plastic substrate," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, pp. 745-749, Feb 2004.
    [77] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, "Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition," Thin Solid Films, vol. 445, pp. 263-267, Dec 15 2003.
    [78] J. K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu, "Ga-Doped ZnO Transparent Conductive Oxide Films Applied to GaN-Based Light-Emitting Diodes for improving Light Extraction Efficiency," Ieee Journal of Quantum Electronics, vol. 44, pp. 1211-1218, Nov-Dec 2008.
    [79] J. K. Sheu, K. H. Chang, and M. L. Lee, "Ultraviolet band-pass photodetectors formed by Ga-doped ZnO contacts to n-GaN," Applied Physics Letters, vol. 92, Mar 17 2008.
    [80] K. M. Chang, J. Y. Chu, and C. C. Cheng, "Highly reliable GaN-based light-emitting diodes formed by p-In0.1Ga0.9N-ITO structure," Ieee Photonics Technology Letters, vol. 16, pp. 1807-1809, Aug 2004.
    [81] J. H. Lim, D. K. Kim, and D. H. Park, "Tests for detecting more NBU-ness at a specific age," Australian & New Zealand Journal of Statistics, vol. 47, pp. 329-337, Sep 2005.
    [82] J. O. Song and T. Y. Seong, "Highly transparent Ag/SnO2 ohmic contact to p-type GaN for ultraviolet light-emitting diodes," Applied Physics Letters, vol. 85, pp. 6374-6376, Dec 27 2004.
    [83] H. G. Hong, J. O. Song, H. Na, H. Kim, K. K. Kim, and T. Y. Seong, "Formation of Sb-doped SnO2 p-type ohmic contact for near-UV GaN-based LEDs by a CIO interlayer," Electrochemical and Solid State Letters, vol. 10, pp. H254-H256, 2007.
    [84] J. H. Lim, D. K. Hwang, H. S. Kim, J. Y. Oh, J. H. Yang, R. Navamathavan, et al., "Low-resistivity and transparent indium-oxide-doped ZnO ohmic contact to p-type GaN," Applied Physics Letters, vol. 85, pp. 6191-6193, Dec 20 2004.
    [85] J. H. Lim, E. J. Yang, D. K. Hwang, J. H. Yang, J. Y. Oh, and S. J. Park, "Highly transparent and low resistance gallium-doped indium oxide contact to p-type GaN," Applied Physics Letters, vol. 87, Jul 25 2005.
    [86] S. Shirakata, T. Sakemi, K. Awai, and T. Yamamoto, "Electrical and optical properties of large area Ga-doped ZnO thin films prepared by reactive plasma deposition," Superlattices and Microstructures, vol. 39, pp. 218-228, Jan-Apr 2006.
    [87] C. Su, T.-K. Sheu, M.-A. Wan, Y.-T. Chang, and M.-C. Feng, "PREPARATION AND CHARACTERIZATION OF ITO THIN FILMS ON GLASS BY A SOL–GEL PROCESS USING METAL SALTS," International Journal of Nanoscience, vol. 3, pp. 447-454, 2004.
    [88] M. J. Chuang, "ITO Films Prepared by Long-throw Magnetron Sputtering without Oxygen Partial Pressure," Journal of Materials Science & Technology, vol. 26, pp. 577-583, Jul 2010.
    [89] H. C. Lee, "Electron scattering mechanisms in indium-tin-oxide thin films prepared at the various process conditions," Applied Surface Science, vol. 252, pp. 3428-3435, Mar 15 2006.
    [90] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, "Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer," Applied Physics Letters, vol. 90, Jun 25 2007.
    [91] S. B. Qadri, H. Kim, H. R. Khan, A. Pique, J. S. Horwitz, D. Chrisey, et al., "Transparent conducting films of In2O3-ZrO2, SnO2-ZrO2 and ZnO-ZrO2," Thin Solid Films, vol. 377, pp. 750-754, Dec 1 2000.
    [92] F. K. Shan and Y. S. Yu, "Band gap energy of pure and Al-doped ZnO thin films," Journal of the European Ceramic Society, vol. 24, pp. 1869-1872, 2004.
    [93] B. E. Sernelius, K. F. Berggren, Z. C. Jin, I. Hamberg, and C. G. Granqvist, "Band-Gap Tailoring of Zno by Means of Heavy Al Doping," Physical Review B, vol. 37, pp. 10244-10248, Jun 15 1988.
    [94] B. E. Sernelius, "Dimensional Crossover for a Quasi-One-Dimensional Polaron," Physical Review B, vol. 37, pp. 7079-7082, Apr 15 1988.
    [95] G. A. Hirata, J. McKittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras, et al., "High transmittance low resistivity ZnO:Ga films by laser ablation," Journal of Vacuum Science & Technology A, vol. 14, pp. 791-794, May-Jun 1996.
    [96] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, "Improvement of InGaN-GaN light-emitting diodes with surface-textured indium-tin-oxide transparent ohmic contacts," Ieee Photonics Technology Letters, vol. 15, pp. 649-651, May 2003.
    [97] X. A. Cao, H. Cho, S. J. Pearton, G. T. Dang, A. P. Zhang, F. Ren, et al., "Depth and thermal stability of dry etch damage in GaN Schottky diodes," Applied Physics Letters, vol. 75, pp. 232-234, Jul 12 1999.
    [98] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, "Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN," Applied Physics Letters, vol. 75, pp. 4130-4132, Dec 27 1999.
    [99] C. H. Chiu, P. C. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, et al., "Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes," Optics Express, vol. 17, pp. 21250-21256, Nov 9 2009.
    [100] C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, et al., "Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes," Optics Express, vol. 17, pp. 21250-21256, 2009/11/09 2009.
    [101] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Y. Park, et al., "Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution," Applied Physics Letters, vol. 94, Feb 16 2009.
    [102] X. M. Zhang, Y. Zhang, Z. L. Wang, W. J. Mai, Y. D. Gu, W. S. Chu, et al., "Synthesis and characterization of Zn1-xMnxO nanowires," Applied Physics Letters, vol. 92, Apr 21 2008.
    [103] K. Y. Yang, S. C. Oh, J. Y. Cho, K. J. Byeon, and H. Lee, "Direct Indium Tin Oxide Nanoparticle Printing Technique for Improvement of Light Extraction Efficiency of GaN-Based LEDs," Journal of the Electrochemical Society, vol. 157, pp. H1067-H1070, 2010.
    [104] F. Ishida, K. Yoshimura, K. Hoshino, and K. Tadatomo, "Improved light extraction efficiency of GaN‐based light emitting diodes by using needle‐shape indium tin oxide p‐contact," physica status solidi (c), vol. 5, pp. 2083-2085, 2008.
    [105] Q. Zhang, K. H. Li, and H. W. Choi, "InGaN light-emitting diodes with indium-tin-oxide sub-micron lenses patterned by nanosphere lithography," Applied Physics Letters, vol. 100, Feb 6 2012.
    [106] T. H. Seo, T. S. Oh, Y. S. Lee, H. Jeong, J. D. Kim, H. Kim, et al., "Enhanced Light Extraction in GaN-Based Light-Emitting Diodes with Holographically Fabricated Concave Hemisphere-Shaped Patterning on Indium-Tin-Oxide Layer," Japanese Journal of Applied Physics, vol. 49, 2010.
    [107] P. Uthirakumar, J. H. Kang, B. D. Ryu, H. G. Kim, H. K. Kim, and C. H. Hong, "Nanoscale ITO/ZnO layer-texturing for high-efficiency InGaN/GaN light emitting diodes," Materials Science and Engineering B-Advanced Functional Solid-State Materials, vol. 166, pp. 230-234, Feb 15 2010.
    [108] S. W. Chen and C. H. Koo, "ITO-Ag alloy-ITO film with stable and high conductivity depending on the control of atomically flat interface," Materials Letters, vol. 61, pp. 4097-4099, Aug 2007.
    [109] K. J. Byeon, H. Park, J. Y. Cho, K. Y. Yang, J. H. Baek, G. Y. Jung, et al., "Fabrication of photonic crystal structure on indium tin oxide electrode of GaN-based light-emitting diodes," Physica Status Solidi a-Applications and Materials Science, vol. 208, pp. 480-483, Feb 2011.
    [110] C. Guillén and J. Herrero, "ITO/metal/ITO multilayer structures based on Ag and Cu metal films for high-performance transparent electrodes," Solar Energy Materials and Solar Cells, vol. 92, pp. 938-941, 2008.
    [111] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, et al., "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano letters, vol. 9, pp. 4359-4363, 2009.
    [112] B. J. Kim, C. Lee, Y. Jung, K. H. Baik, M. A. Mastro, J. K. Hite, et al., "Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes," Applied Physics Letters, vol. 99, Oct 3 2011.
    [113] B.-J. Kim, C. Lee, Y. Jung, K. Hyeon Baik, M. A. Mastro, J. K. Hite, et al., "Large-area transparent conductive few-layer graphene electrode in GaN-based ultra-violet light-emitting diodes," Applied Physics Letters, vol. 99, p. 143101, 2011.
    [114] B. J. Kim, C. Lee, M. A. Mastro, J. K. Hite, C. R. Eddy, F. Ren, et al., "Buried graphene electrodes on GaN-based ultra-violet light-emitting diodes," Applied Physics Letters, vol. 101, Jul 16 2012.
    [115] T. H. Seo, K. J. Lee, T. S. Oh, Y. S. Lee, H. Jeong, A. H. Park, et al., "Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode," Applied Physics Letters, vol. 98, Jun 20 2011.
    [116] M. Choe, C. Y. Cho, J. P. Shim, W. Park, S. K. Lim, W. K. Hong, et al., "Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices," Applied Physics Letters, vol. 101, Jul 16 2012.
    [117] M. Choe, C.-Y. Cho, J.-P. Shim, W. Park, S. K. Lim, W.-K. Hong, et al., "Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices," Applied Physics Letters, vol. 101, p. 031115, 2012.
    [118] S. Chandramohan, J. H. Kang, Y. S. Katharria, N. Han, Y. S. Beak, K. B. Ko, et al., "Work-function-tuned multilayer graphene as current spreading electrode in blue light-emitting diodes," Applied Physics Letters, vol. 100, Jan 9 2012.
    [119] LED IV Curve. Available: http://creebulb.com/products/standard-a-type
    [120] Sheet resistance measurement. Available: http://four-point-probes.com/sheet-resistance-and-the-calculation-of-resistivity-or-thickness-relative-to-semiconductor-applications/
    [121] M. S. Shur, Handbook series on semiconductor parameters vol. 1: World Scientific, 1996.
    [122] X. L. Sheng Liu, LED Packaging for Lighting Applications: Design,Manufacturing, and Testing. New York: Wiley, 2011.
    [123] F. Perez-Ocon, M. Rubino, A. M. Pozo, and O. Rabaza, "Design of new traffic lights: Traffic safety and maintenance ease," Engineering Structures, vol. 57, pp. 388-392, Dec 2013.
    [124] X. H. Lee, C. C. Lin, Y. Y. Chang, H. X. Chen, and C. C. Sun, "Power management of direct-view LED backlight for liquid crystal display," Optics and Laser Technology, vol. 46, pp. 142-144, Mar 2013.
    [125] J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, et al., "Elimination of total internal reflection in GaInN light-emitting diodes by graded-refractive-index micropillars," Applied Physics Letters, vol. 93, p. 221111, 2008.
    [126] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Applied Physics Letters, vol. 84, pp. 855-857, Feb 9 2004.
    [127] H. W. Huang, C. C. Kao, J. T. Chu, W. D. Liang, H. C. Kuo, S. C. Wang, et al., "Improvement of InGaN/GaN light emitting diode performance with a nano-roughened p-GaN surface by excimer laser-irradiation," Materials Chemistry and Physics, vol. 99, pp. 414-417, Oct 10 2006.
    [128] D. W. Kim, H. Y. Lee, M. C. Yoo, and G. Y. Yeom, "Highly efficient vertical laser-liftoff GaN-based light-emitting diodes formed by optimization of the cathode structure," Applied Physics Letters, vol. 86, Jan 31 2005.
    [129] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, et al., "Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface," Nanotechnology, vol. 16, pp. 1844-1848, Sep 2005.
    [130] S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, "Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography," Nanotechnology, vol. 18, p. 055306, 2007.
    [131] K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, et al., "Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes," Applied Physics Letters, vol. 93, Sep 8 2008.
    [132] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, et al., "Light-output enhancement in a nitride-based light-emitting diode with 22 degrees undercut sidewalls," Ieee Photonics Technology Letters, vol. 17, pp. 19-21, Jan 2005.
    [133] S.-I. Na, G.-Y. Ha, D.-S. Han, S.-S. Kim, J.-Y. Kim, J.-H. Lim, et al., "Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes," Photonics Technology Letters, IEEE, vol. 18, pp. 1512-1514, 2006.
    [134] H. F. Wong, D. L. Green, T. Y. Liu, D. G. Lishan, M. Bellis, E. L. Hu, et al., "Investigation of Reactive Ion Etching Induced Damage in Gaas-Algaas Quantum Well Structures," Journal of Vacuum Science & Technology B, vol. 6, pp. 1906-1910, Nov-Dec 1988.
    [135] T. Fujii, Y. Gao, R. Sharma, E. Hu, S. DenBaars, and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening," Applied physics letters, vol. 84, pp. 855-857, 2004.
    [136] Keithley 2430. Available: http://www.testequipmentdepot.com/keithley/sourcemeter-smu-instruments/single-channel-sourcemeter-smu-instrument-2430.htm
    [137] RM3000 Four point measurement. Available: http://www.four-point-probes.com/rm3ar_instructions.pdf

    QR CODE