簡易檢索 / 詳目顯示

研究生: 黃瀚民
H. M. Huang
論文名稱: 鈣鈦礦系玻璃之燒結與結晶行為研究
指導教授: 簡朝和
J. H. Jean
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 54
中文關鍵詞: 玻璃陶瓷緻密黏滯性流動結晶介電性質
外文關鍵詞: glass ceramic, dinsification, viscous flow, crystalization, dielectric properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討Ba-Nd-Ti-Pb-Sr-Ca-Zn-Al-Si-O玻璃的緻密行為、結晶行為與材料性質間的關係。由研究結果顯示:此玻璃系統的緻密行為控制機制是玻璃的黏滯性流動。主要結晶相為鈣鈦礦結構的(Ba,Sr,Pb)TiO3,α-Al2O3、Ba2ZnSi2O7和PbTi3O7結晶。
    由結晶潛伏期得到(Ba,Sr,Pb)TiO3比Ba2ZnSi2O7和PbTi3O7早形成。而後Ba2ZnSi2O7和PbTi3O7同時消失,且(Ba,Sr,Pb)TiO3隨之增加。判定Ba2ZnSi2O7和PbTi3O7反應形成(Ba,Sr,Pb)TiO3。

    此玻璃系統結晶與緻密間的關係為:達到緻密前結晶產生則無法緻密,反之則系統可達緻密。

    介電性質與鈣鈦礦結構的(Ba,Sr,Pb)TiO3含量有關,介電常數會隨(Ba,Sr,Pb)TiO3增加而上升。


    一、簡介 二、實驗步驟 2.1 試片準備 2.2 燒熱處理 2.2.1 等溫燒結 2.2.2 非等溫燒結 2.3性質分析 2.3.1 密度量測 2.3.2 微結構觀察 2.3.3 組成分析 2.3.4 X光繞射分析 2.3.5 電性量測 2.3.6 熱分析 三、結果與討論 3.1 基本性質 3.1.1 元素分析 3.1.2 結晶分析 3.1.3 熱分析 3.2 等溫燒結 3.2.1 等溫燒結的緻密行為 3.2.2 等溫燒結的結晶行為 3.3 非等溫燒結 3.3.1 非等溫燒結的緻密行為 3.3.2 非等溫燒結的緻密與結晶行為 3.4 材料性質 四、結論 五、參考文獻

    [1] K. C. Cruickshank, X. Jing, G. Wood, E. E. Lachowski and A. R. West, “Barium Neodymium Titanate Electroceramics : Phase Equilibria Studies of Ba6-3xNd8+2xTi18O54 Solid Solution,” J. Am. Ceram. Soc., 79[6], 1605-10 (1996)
    [2] K. Katatama, Y. Azuma and Y. Takahashi, “Molten Salt Synthesis of Single-Phase BaNd2Ti4O12 Powder,” J. Mater. Sci., 34, 301-305 (1999)
    [3] R. Ubic, I. M. Reaney and W. E. Lee, “Perovskite NdTiO3 in Sr- and Ca-Doped BaO-Nd2O3-TiO2 Microwave Dielectric Ceramics,” J. Mater. Res., 14[4], 1576-80 (1999)
    [4] Y. J. Wu and X. M. Chen, “Modified Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics,” J. Eur. Ceram. Soc., 19, 1123-26 (1999)
    [5] R. Ubic, I. M. Reaney, W. E. Lee, J. Samuels and E. Evangelinos, “Effect of Divalent Dopants on Properties of Ba3.75Nd9.5Ti18O54 Microwave Dielectric Resonators,” Mat. Res. Soc. Symp. Proc., 453, 495-500 (1997)
    [6] G. A. Rossetti, D. J. Watson, R. E. Newnham and J. H. Adair, “Kinetics of the Hydrothermal Crystallization of the Perovskite Lead Titanate,” J. Cryst. Growth, 116, 251 (1992)
    [7] K. Yao, W. Zhu, L. Zhang and X. Yao, “Structural and Electrical Characters of Sintered Ba-Ti-Al-Si Ferroelectric Glass-Ceramic Prepared From Sol-Gel Derived Powders,” Jpn. J. Appl. Phys., 36, 4369-76 (1997)
    [8] J. Zhai, X. Yao and L. Zhang, “The High Frequency Properties and Crystallization of PbTiO3 Glass-Ceramics by Sol-Gel Process,” J. Electroceram., 5[3], 211-216 (2000)
    [9] J. J. Shyu and Y. S. Yang, “Crystallization of a PbO-BaO-TiO2-Al2O3-SiO2 Glass,” J. Am. Ceram. Soc., 78[6], 1463-68 (1995)
    [10] J. J. Shyu and Y. S. Yang, “Crystallization and Properties of a Perovskite Glass-Ceramic,” J. Mater. Sci., 31, 4859-63 (1996)
    [11] S. W. Lee, K. B. Shim, K. H. Auh and P. Knott, “Activation Energy of Crystal Growth in PbTiO3 Glass Using Differential Thermal Analysis,” J. Non-Cryst. Solids, 248, 127-136 (1999)
    [12] Y. M. Chiang, D. Birnie and W. D. Kingery, in ‘PHYSICAL CERAMICS-Principles for Ceramic Science and Engineering,’ John Wiley & Sons, NY, 1997, p16
    [13] J. H. Jean and T. K. Gupta, “Isothermal and Nonisothermal Sintering Kinetics of Glass-Filled Ceramics,” J. Mater. Res., 7[12], 3342-47 (1992)
    [14] J. H. Jean and T. K. Gupta, “Liquid-Phase Sintering in the Glass-Cordierite System,” J. Mater. Sci., 27, 1575-84 (1992)
    [15] J. H. Jean and T. K. Gupta, “Liquid-Phase Sintering in the Glass-Cordierite System : Particle Size Effect,” J. Mater. Sci., 27, 4967-73 (1992)
    [16] J. H. Jean and T. K. Gupta, “Densification Kinetics of Binary Borosilicate Glass Composite,” J. Mater. Res., 9[2], 486-492 (1994)
    [17] J. H. Jean and T. K. Gupta, “Densification Kinetics and Modeling of Glass-Filled Alumina Composite,” J. Mater. Res., 9[3], 771-779 (1994)
    [18] J. H. Jean and T. K. Gupta, “Densification Inhibitor of Low-Dielectric Binary Glass Composite,” J. Mater. Sci., 31, 4289-95 (1996)
    [19] S. L. Swartz, A. S. Bhalla, L. E. Cross and W. N. Lawless, “SrTiO3 Glass Ceramics : Part II Dielectric Properties,” J. Mater. Sci., 33, 4004-12 (1988)
    [20] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, ‘Introduction to Ceramics,’ 2nd edition, John Wiley & Sons, NY, 1976, p595 p933
    [21] R. L. David, ‘CRC Handbook of Chemistry and Physics,’ 76th edition, Chemical Rubber Publishing Company, NY, 1995, P12-51~59,62
    [22] V. A. Greenhut, ‘Engineered Materials Handbook,’ Vol 4, ASM Internation (Menlo Park, OH), 1987, P566
    [23] J. L. Henry and G. Q. Thompson, “Thermal Expansion Match Between Molybdenum (TZM Alloy) and Oxides of the Perovskite and Spinel Types,” Am. Ceram. Soc. Bull., 55[3],281-284 (1976)
    [24] A. Herczog, “Barrier Layers in Semiconducting Barium Titanate Glass-Ceramics,” 67[7], 484-490 (1984)
    [25] A. Bhargava, J. E. Shelby and R. L. Snyder, “Crystallization of glasses in the system BaO-TiO2-B2O3,” J. Non-Cryst. Solids, 102[1-3], 136-142 (1988)
    [26] S. M. Lynch and J. E. Shelby, “Crystal Clamping in Lead Titanate Glass-Ceramics,” J. Am. Ceram. Soc., 67[6], 424-427 (1984)
    [27] M. A. C. G. van de Graaf, J. C. Lodder, A. J Burggraaf, “Microstructure Development and Crystallization Kinetics of Lead Titanate Forming from a PbO-TiO2-Al2O3-SiO2 GLASS,” Glass Technology, 15[6], 143-147 (1974)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE