簡易檢索 / 詳目顯示

研究生: 周子勤
Chou, Tsu-chin
論文名稱: 階層式孔洞碳及其複合材料之結構設計與電化學應用
Architectural design of hierarchically porous carbon and its composites in electrochemical applications
指導教授: 董瑞安
Doong, Ruey-an
胡啟章
Hu, Chi-chang
口試委員: 董瑞安
胡啟章
呂世源
林弘萍
張仍奎
蘇黨生
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 185
中文關鍵詞: 階層式材料規則孔洞超級電容器孔洞碳材料氧氣還原
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著攜帶式電子產品、電動車、混和動力式電動車及現代社會對生活品質需求的增加,燃料電池、鋰離子電池、染料敏化太陽能電池和超級電容器等具有高能量或功率輸出的新型能量儲存/轉換系統成為重要且具吸引力的替代能源。為了滿足高性能儲能/轉換系統的需求,功能強大且有效的材料是高科技研發不可或缺的一環。在過去數十年中,由於奈米科技的蓬勃發展,各種功能性的奈米材料不斷出現;此外,奈米合成及鑑定技術日趨成熟亦幫助吾人發現許多奈米材料獨特、意想不到卻極為有用的物理化學性質。這些奈米尺度技術的開發及奈米材料特性的發現成為了現代科學的基礎。其中,材料化學扮演了不可或缺的角色。
    奈米材料及奈米技術基於何種原因而具有卓越的功能及性能,一直是在開發高端應用科技中面臨的主要困難;反之,分辨性能低落的原因同常是較為容易且直覺的。幸運的是,我們可以藉由奈米合成技術的調控,來探討其卓越性能可能發生的原因。舉例來說,雖然大多數人都認同且相信中孔材料具有較好的質傳能力,然而多孔材料中的質傳行為一直是一個缺乏獨立且系統性研究的議題。然而在奈米合成技術的幫助下,我們已經能夠找出適當的工具來說明孔洞材料中的質傳行為了。
    在本研究中,我們利用模板法成功的開發了具有類似結構及化學性質的孔洞材料。他們之間最大的不同在於孔洞大小的分布,其中包含了用聚苯乙烯球為模板合成的規則巨孔材料、用三嵌段高分子及氧化矽模板合成的規則中孔材料。因此,我們得以利用不同的孔洞結構及孔洞大小來了解特定電化學應用中的質傳行為。研究結果發現階層規則孔洞碳材包含有規則的大孔結構(200 nm)及相連的孔洞結構(包含約5 nm的規則中孔洞及微孔),此階層式的規則孔洞結構能有效做為離子傳遞時的緩衝空間。從電化學分析中亦發現,較大的孔洞結構有助於高速充放電的電容維持率。研究中我們發現,巨孔可以有效的增加物質傳遞至較小孔洞的速率,而中孔則能提供電化學儲能或化學反應足夠的反應空間及面積。此外,我們也發現相互聯通的中孔洞能有效的增加中孔洞之間的擴散速率。同時,我們也發現由於階層式孔洞結構增加孔洞材料的有效反應面積,以階層式孔洞材料做為電極材料的電雙層電容器、擬電容器及電化學催化反應之效率亦被大大提升。總結,在本研究中,我們利用模板法合成特定孔洞結構的多孔材料,並利用其孔洞結構差異來闡述不同大小之孔洞結構對質傳行為及電化學儲能/轉化系統的影響。


    With increasing demands on portable electronics, electric vehicles, hybrid electric vehicles and the quality life needs of modern society, novel energy storage/conversion systems with high energy or power delivery, such as fuel cells, lithium-ion batteries, dye-sensitized solar cells and supercapacitors, are highly important and attractive substituted energy. To fulfill the requirements of high performance energy storage/conversion systems, powerful and effective materials are necessary for advanced researches. In past decades, by the blooming developments and discoveries of nanotechnologies, fascinating and impressive nanomaterials showed up one after another. Owing to the mature nanotechnology, including synthesis and characterization approaches, numerous unique, unexpected and useful phenomena and physicochemical properties of nanomaterials were defined and discovered. These developments and discoveries provide convenience and are the fundamentals of modern sciences; especially, chemistry of materials plays extremely important roles in the way to better life and further demonstrations of natural law.
    In the trends of developing advanced applications, the main difficulty is to provide the detailed information for the reasons why the nanomaterials or nanotechnologies can achieve the excellent performance and functions in that way, but it is usually much easier to provide plenty of statements for the illness than benefits. Fortunately, based on the controllable nanotechnologies, we could distinguish the effects in a reasonable and reliable way. One of the issues, which we have demonstrated the phenomena as well as possible effects but the practical reasons, is the mass-transfer behaviors in porous materials. As everybody know and believe in, mass-transfer ability in mesoporous structures is far superior to that in micropores. However, it is always lack of an independent and systematic discussion in this field. Fortunately, nanotechnologies are helpful and useful tools to illustrate it with suitable structure design in detailed.
    In this study, we have developed porous materials with various porous structures, that is, the same configuration and chemical properties but different length scale in pores by the assistance of templating methods. Those materials, including ordered macroporous carbons, ordered mesoporous carbons and hierarchically ordered macro-/meso-porous carbons, were synthesized by introduction macroporous templates, polystyrene latex spheres, and mesoporous templates, triblock copolymer and silicate oligomers, to synthesis procedures. Consequently, we could obtain the desirable porous structures, also understand and manage the effects of mass-transfer in different length scale (pore size) under a specific electrochemical application. From the experimental results, hierarchically ordered porous materials are composed of ordered macroporous (~ 300 nm) and interconnected porous sturcutes (including ~5 nm ordered mesopores and micropores). The hierarchically porous structures could be served as ion-buffering reservoir of ions; in addition, the larger pores are beneficial on capacitance retention at high charge/discharge rate from impedance analysis. In summary, we found that the macropores can enhance the rate of mass-transfer toward smaller pores, and the mesopores provide sufficient pore volume and surface area as a platform of energy storage or chemical reactions. Besides, an interconnected mesopore shows their improvements in diffusion rate of each mesopores. At same time, by the advantage of hierarchically porous structures, which is a combination of different size pores, the performance of electrochemical applications (e.g. such as double layer capacitance, pseudocapacitance and electrochemical catalysis) is dramatically improvements due to the enhancements in mass-transfer rate upon porous materials. In conclusions, we successfully constructed specific porous structures and distinguish their roles in altering the mass-transfer behaviors and enhancing performance of energy storage/conversion systems by the assistance of templating fabrication strategies of porous materials.

    中文摘要 I Abstract III Figure index IX Table index XVI Chapter 1 Introduction 1 1-1 General statement 2 1-2 Hierarchically porous carbon 5 1-2-1 Templated synthetic strategies for hierarchically porous carbons 9 1-2-2 Graphitic carbon allotrops for novel hierarchically porous carbons 20 1-3 Applications of hierarchically porous carbon 25 1-3-1 Supercapacitors 25 1-3-2 Hierarchically porous carbon in catalysis 43 1-4 Motivation 47 1-5 Objectives 48 Chapter 2 Research design 50 2-1 Research design 51 2-2 Experimental methods and details 52 2-2-1 Materials 52 2-2-2 Synthesis methods 52 2-2-3 Characterizations 59 2-2-4 Electrochemical measurements 61 Chapter 3 Hierarchically ordered porous carbons and ordered porous carbons 64 Abstract 65 3-1 Introduction 66 3-2 Results and discussion 68 3-3 Summary 84 Chapter 4 The architectural effect of hierarchical structure in electrochemical capacitors……………………………………………………………………………..85 Abstract 86 4-1 Introduction 87 4-2 Results and discussion 89 4-3 Summary 105 Chapter 5 Hierarchically porous carbon-manganese oxide composites for electrochemical capacitors 107 Abstract 108 5-1 Introduction 109 5-2 Results and discussion 112 5-2-1 Preparation and characterization of electrode materials 112 5-2-2 Electrochemical performance 124 5-3 Summary 134 Chapter 6 Hierarchically porous carbon and its composites in full cell supercapacitors and electrocatalysts of oxygen reduction reaction 136 Abstract 137 6-1 Introduction 138 6-2 Results and discussions 140 6-2-1 Symmetric and asymmetric full cells 140 6-2-2 Electrocatalytic properties on ORR 151 6-3 Summary 156 Chapter 7 Conclusions and perspectives 158 7-1 Conclusions 159 7-2 Perspectives and suggestions 161 References 163

    1. Su, D.S., S. Perathoner, and G. Centi, Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013. 113(8): p. 5782-5816.
    2. Jiang, H., P.S. Lee, and C.Z. Li, 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science, 2013. 6(1): p. 41-53.
    3. Nishihara, H. and T. Kyotani, Templated Nanocarbons for Energy Storage. Advanced Materials, 2012. 24(33): p. 4473-4498.
    4. Zhai, Y., Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Carbon Materials for Chemical Capacitive Energy Storage. Advanced Materials, 2011. 23(42): p. 4828-4850.
    5. Stein, A., Z.Y. Wang, and M.A. Fierke, Functionalization of Porous Carbon Materials with Designed Pore Architecture. Advanced Materials, 2009. 21(3): p. 265-293.
    6. Ariga, K., S. Ishihara, H. Abe, M. Li, and J.P. Hill, Materials nanoarchitectonics for environmental remediation and sensing. Journal of Materials Chemistry, 2012. 22(6): p. 2369-2377.
    7. Navalon, S., A. Dhakshinamoorthy, M. Alvaro, and H. Garcia, Heterogeneous Fenton Catalysts Based on Activated Carbon and Related Materials. Chemsuschem, 2012. 4(12): p. 1712-1730.
    8. Lee, J., D. Lee, E. Oh, J. Kim, Y.P. Kim, S. Jin, H.S. Kim, Y. Hwang, J.H. Kwak, J.G. Park, C.H. Shin, J. Kim, and T. Hyeon, Preparation of a magnetically switchable bioelectrocatalytic system employing cross-linked enzyme aggregates in magnetic mesocellular carbon foam. Angewandte Chemie-International Edition, 2005. 44(45): p. 7427-7432.
    9. Ohkubo, T., J. Miyawaki, K. Kaneko, R. Ryoo, and N.A. Seaton, Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane - Experiment and GCMC simulation. Journal of Physical Chemistry B, 2002. 106(25): p. 6523-6528.
    10. Zhou, H.S., S.M. Zhu, M. Hibino, I. Honma, and M. Ichihara, Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003. 15(24): p. 2107-2111.
    11. Stein, A., F. Li, and N.R. Denny, Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chemistry of Materials, 2008. 20(3): p. 649-666.
    12. Stein, A. and R.C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Current Opinion in Solid State & Materials Science, 2001. 5(6): p. 553-564.
    13. Stein, A., Sphere templating methods for periodic porous solids. Microporous and Mesoporous Materials, 2001. 44: p. 227-239.
    14. Meng, Y., D. Gu, F.Q. Zhang, Y.F. Shi, H.F. Yang, Z. Li, C.Z. Yu, B. Tu, and D.Y. Zhao, Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angewandte Chemie-International Edition, 2005. 44(43): p. 7053-7059.
    15. Meng, Y., D. Gu, F.Q. Zhang, Y.F. Shi, L. Cheng, D. Feng, Z.X. Wu, Z.X. Chen, Y. Wan, A. Stein, and D.Y. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chemistry of Materials, 2006. 18(18): p. 4447-4464.
    16. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. 1999, New York: SpringerUS.
    17. Zakhidov, A.A., R.H. Baughman, Z. Iqbal, C.X. Cui, I. Khayrullin, S.O. Dantas, I. Marti, and V.G. Ralchenko, Carbon structures with three-dimensional periodicity at optical wavelengths. Science, 1998. 282(5390): p. 897-901.
    18. Kaskhedikar, N.A. and J. Maier, Lithium Storage in Carbon Nanostructures. Advanced Materials, 2009. 21(25-26): p. 2664-2680.
    19. Bottani, E.J. and J.M.D. Tascón, Adsorption by carbons. 1st ed. 2008, Amsterdam ; Boston ; London: Elsevier. xxix, 742 p.
    20. Liang, C.D., Z.J. Li, and S. Dai, Mesoporous carbon materials: Synthesis and modification. Angewandte Chemie-International Edition, 2008. 47(20): p. 3696-3717.
    21. Huang, C.-H., D. Gu, D. Zhao, and R.-A. Doong, Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites. Chemistry of Materials, 2010. 22(5): p. 1760-1767.
    22. Zhai, Y.P., Y.Q. Dou, X.X. Liu, S.S. Park, C.S. Ha, and D.Y. Zhao, Soft-template synthesis of ordered mesoporous carbon/nanoparticle nickel composites with a high surface area. Carbon, 2011. 49(2): p. 545-555.
    23. Linares-Solano, A., D. Lozano-Castello, M.A. Lillo-Rodenas, and D. Cazorla-Amoros, Carbon Activation by Alkaline Hydroxides Preparation and Reactions, Porosity and Performance. Chemistry and Physics of Carbon, Vol 30, 2008. 30: p. 1-62.
    24. Figueiredo, J.L., M.F.R. Pereira, M.M.A. Freitas, and J.J.M. Orfao, Modification of the surface chemistry of activated carbons. Carbon, 1999. 37(9): p. 1379-1389.
    25. Lee, W.H. and P.J. Reucroft, Vapor adsorption on coal- and wood-based chemically activated carbons - (I) - Surface oxidation states and adsorption of H2O. Carbon, 1999. 37(1): p. 7-14.
    26. Serp, P., J.C. Hierso, R. Feurer, Y. Kihn, P. Kalck, J.L. Faria, A.E. Aksoylu, A.M.T. Pacheco, and J.L. Figueiredo, Single-step preparation of activated carbon supported platinum catalysts by fluidized bed organometallic chemical vapor deposition. Carbon, 1999. 37(3): p. 527-530.
    27. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    28. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    29. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes - the route toward applications. Science, 2002. 297(5582): p. 787-792.
    30. Subramoney, S., Novel nanocarbons - Structure, properties, and potential applications. Advanced Materials, 1998. 10(15): p. 1157-+.
    31. Subramoney, S., Nanotubes and nanocarbons - An overview. Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Vol 6, 1998. 98(8): p. 781-782.
    32. Inagaki, M., H. Konno, and O. Tanaike, Carbon materials for electrochemical capacitors. Journal of Power Sources, 2010. 195(24): p. 7880-7903.
    33. Xia, Y., Z. Yang, and R. Mokaya, Templated nanoscale porous carbons. Nanoscale, 2010. 2(5): p. 639-659.
    34. Lee, J., J. Kim, and T. Hyeon, Recent progress in the synthesis of porous carbon materials. Advanced Materials, 2006. 18(16): p. 2073-2094.
    35. Wan, Y., Y.F. Shi, and D.Y. Zhao, Supramolecular aggregates as templates: Ordered mesoporous polymers and carbons. Chemistry of Materials, 2008. 20(3): p. 932-945.
    36. Knox, J.H., B. Kaur, and G.R. Millward, Structure and Performance of Porous Graphitic Carbon in Liquid-Chromatography. Journal of Chromatography, 1986. 352: p. 3-25.
    37. Goltner, C.G. and M.C. Weissenberger, Mesoporous organic polymers obtained by "twostep nanocasting". Acta Polymerica, 1998. 49(12): p. 704-709.
    38. Ryoo, R., S.H. Joo, and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999. 103(37): p. 7743-7746.
    39. Lee, J., S. Yoon, T. Hyeon, S.M. Oh, and K.B. Kim, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications, 1999(21): p. 2177-2178.
    40. Ryoo, R., S.H. Joo, M. Kruk, and M. Jaroniec, Ordered mesoporous carbons. Advanced Materials, 2001. 13(9): p. 677-681.
    41. Kaneda, M., T. Tsubakiyama, A. Carlsson, Y. Sakamoto, T. Ohsuna, O. Terasaki, S.H. Joo, and R. Ryoo, Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. Journal of Physical Chemistry B, 2002. 106(6): p. 1256-1266.
    42. Yang, H.F., Q.H. Shi, X.Y. Liu, S.H. Xie, D.C. Jiang, F.Q. Zhang, C.Z. Yu, B. Tu, and D.Y. Zhao, Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. Chemical Communications, 2002(23): p. 2842-2843.
    43. Lu, A.H. and F. Schuth, Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006. 18(14): p. 1793-1805.
    44. Lee, J., S. Yoon, S.M. Oh, C.H. Shin, and T. Hyeon, Development of a new mesoporous carbon using an HMS aluminosilicate template. Advanced Materials, 2000. 12(5): p. 359-362.
    45. Liang, C.D., K.L. Hong, G.A. Guiochon, J.W. Mays, and S. Dai, Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie-International Edition, 2004. 43(43): p. 5785-5789.
    46. Johnson, S.A., P.J. Ollivier, and T.E. Mallouk, Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science, 1999. 283(5404): p. 963-965.
    47. Jiang, P., K.S. Hwang, D.M. Mittleman, J.F. Bertone, and V.L. Colvin, Template-directed preparation of macroporous polymers with oriented and crystalline arrays of voids. Journal of the American Chemical Society, 1999. 121(50): p. 11630-11637.
    48. Holland, B.T., C.F. Blanford, and A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998. 281(5376): p. 538-540.
    49. Zhao, D.Y., Q.S. Huo, J.L. Feng, B.F. Chmelka, and G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998. 120(24): p. 6024-6036.
    50. Zhao, D.Y., J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, and G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998. 279(5350): p. 548-552.
    51. Bagshaw, S.A., E. Prouzet, and T.J. Pinnavaia, Templating of Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide Surfactants. Science, 1995. 269(5228): p. 1242-1244.
    52. Tanev, P.T. and T.J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular-Sieves. Science, 1995. 267(5199): p. 865-867.
    53. Kleitz, F., S.H. Choi, and R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003(17): p. 2136-2137.
    54. Kleitz, F., D.N. Liu, G.M. Anilkumar, I.S. Park, L.A. Solovyov, A.N. Shmakov, and R. Ryoo, Large cage face-centered-cubic Fm3m mesoporous silica: Synthesis and structure. Journal of Physical Chemistry B, 2003. 107(51): p. 14296-14300.
    55. Chai, G.S., I.S. Shin, and J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004. 16(22): p. 2057-2061.
    56. Joo, S.H., S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001. 412(6843): p. 169-172.
    57. Kulak, A., Y.J. Lee, Y.S. Park, H.S. Kim, G.S. Lee, and K.B. Yoon, Anionic surfactants as nanotools for the alignment of non-spherical zeolite nanocrystals. Advanced Materials, 2002. 14(7): p. 526-+.
    58. Frackowiak, E. and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950.
    59. Winter, M. and R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4269.
    60. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 2008. 7(11): p. 845-854.
    61. Zhang, L.L. and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009. 38(9): p. 2520-2531.
    62. Su, D.S. and R. Schlogl, Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. Chemsuschem, 2010. 3(2): p. 136-168.
    63. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2011. 41(2): p. 797-828.
    64. Wang, G.P., L. Zhang, and J.J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 2012. 41(2): p. 797-828.
    65. Xu, F., R.J. Cai, Q.C. Zeng, C. Zou, D.C. Wu, F. Li, X.E. Lu, Y.R. Liang, and R.W. Fu, Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. Journal of Materials Chemistry, 2011. 21(6): p. 1970-1976.
    66. Yang, S.Y., K.H. Chang, H.W. Tien, Y.F. Lee, S.M. Li, Y.S. Wang, J.Y. Wang, C.C.M. Ma, and C.C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors. Journal of Materials Chemistry, 2011. 21(7): p. 2374-2380.
    67. Zheng, Z.J. and Q.M. Gao, Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors. Journal of Power Sources, 2011. 196(3): p. 1615-1619.
    68. Huang, C.H., Q. Zhang, T.C. Chou, C.M. Chen, D.S. Su, and R.A. Doong, Three-Dimensional Hierarchically-Ordered Porous Carbons with Partially Graphitic Nanostructure for Electrochemical Capacitive Energy Storage. Chemsuschem, 2012. 5(3): p. 563-571.
    69. Zhang, X., Y. Li, and C. Cao, Facile one-pot synthesis of mesoporous hierarchically structured silica/carbon nanomaterials. Journal of Materials Chemistry, 2012. 22(28): p. 13918-13921.
    70. Chou, T.C., C.H. Huang, R.A. Doong, and C.C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. Journal of Materials Chemistry A, 2013. 1(8): p. 2886-2895.
    71. Kim, P., J.B. Joo, W. Kim, S.K. Kang, I.K. Song, and J. Yi, A novel method for the fabrication of ordered and three dimensionally interconnected macroporous carbon with mesoporosity. Carbon, 2006. 44(2): p. 389-392.
    72. Woo, S.W., K. Dokko, H. Nakano, and K. Kanamura, Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. Journal of Materials Chemistry, 2008. 18(14): p. 1674-1680.
    73. Liu, H.J., X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, and Y.Y. Xia, Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry, 2010. 20(20): p. 4223-4230.
    74. Liu, H.J., W.J. Cui, L.H. Jin, C.X. Wang, and Y.Y. Xia, Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. Journal of Materials Chemistry, 2009. 19(22): p. 3661-3667.
    75. Wang, Z.Y., E.R. Kiesel, and A. Stein, Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. Journal of Materials Chemistry, 2008. 18(19): p. 2194-2200.
    76. Wang, Z.Y. and A. Stein, Morphology control of carbon, silica, and carbon/silica nanocomposites: From 3D ordered Macro-/Mesoporous monoliths to shaped mesoporous particles. Chemistry of Materials, 2008. 20(3): p. 1029-1040.
    77. Deng, Y.H., C. Liu, T. Yu, F. Liu, F.Q. Zhang, Y. Wan, L.J. Zhang, C.C. Wang, B. Tu, P.A. Webley, H.T. Wang, and D.Y. Zhao, Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007. 19(13): p. 3271-3277.
    78. Tiemann, M., Repeated templating. Chemistry of Materials, 2008. 20(3): p. 961-971.
    79. Li, F.J., M. Morris, and K.Y. Chan, Electrochemical capacitance and ionic transport in the mesoporous shell of a hierarchical porous core-shell carbon structure. Journal of Materials Chemistry, 2011. 21(24): p. 8880-8886.
    80. Zhou, D.-D., H.-J. Liu, Y.-G. Wang, C.-X. Wang, and Y.-Y. Xia, Ordered mesoporous/microporous carbon sphere arrays derived from chlorination of mesoporous TiC/C composite and their application for supercapacitors. Journal of Materials Chemistry, 2012. 22(5): p. 1937-1943.
    81. Liang, Y.R., F.X. Liang, D.C. Wu, Z.H. Li, F. Xu, and R.W. Fu, Construction of a hierarchical architecture in a wormhole-like mesostructure for enhanced mass transport. Physical Chemistry Chemical Physics, 2011. 13(19): p. 8852-8856.
    82. Xue, C.F., B. Tu, and D.Y. Zhao, Evaporation-Induced Coating and Self-Assembly of Ordered Mesoporous Carbon-Silica Composite Monoliths with Macroporous Architecture on Polyurethane Foams. Advanced Functional Materials, 2008. 18(24): p. 3914-+.
    83. Chen, Z., J. Wen, C.Z. Yan, L. Rice, H. Sohn, M.Q. Shen, M. Cai, B. Dunn, and Y.F. Lu, High-Performance Supercapacitors Based on Hierarchically Porous Graphite Particles. Advanced Energy Materials, 2011. 1(4): p. 551-556.
    84. Fulvio, P.F., R.T. Mayes, X.Q. Wang, S.M. Mahurin, J.C. Bauer, V. Presser, J. McDonough, Y. Gogotsi, and S. Dai, "Brick-and-Mortar" Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011. 21(12): p. 2208-2215.
    85. Cheng, Q., J. Tang, J. Ma, H. Zhang, N. Shinya, and L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Physical Chemistry Chemical Physics, 2011. 13(39): p. 17615-17624.
    86. Liu, C., F. Li, L.P. Ma, and H.M. Cheng, Advanced Materials for Energy Storage. Advanced Materials, 2010. 22(8): p. E28-+.
    87. Largeot, C., C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, and P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 2008. 130(9): p. 2730-+.
    88. Liu, J., G.Z. Cao, Z.G. Yang, D.H. Wang, D. Dubois, X.D. Zhou, G.L. Graff, L.R. Pederson, and J.G. Zhang, Oriented Nanostructures for Energy Conversion and Storage. Chemsuschem, 2008. 1(8-9): p. 676-697.
    89. Wakihara, M., Future directions for intercalation chemistry. Denki Kagaku, 1998. 66(12): p. 1172-1172.
    90. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 451(7179): p. 652-657.
    91. Pandolfo, A.G. and A.F. Hollenkamp, Carbon properties and their role in supercapacitors. Journal of Power Sources, 2006. 157(1): p. 11-27.
    92. Conway, B.E., V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources, 1997. 66(1-2): p. 1-14.
    93. Kotz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15-16): p. 2483-2498.
    94. Burke, A., Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000. 91(1): p. 37-50.
    95. Huggins, R.A., Supercapacitors and electrochemical pulse sources. Solid State Ionics, 2000. 134(1-2): p. 179-195.
    96. Qu, D.Y. and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
    97. Liu, C.Y., A.J. Bard, F. Wudl, I. Weitz, and J.R. Heath, Electrochemical characterization of films of single-walled carbon nanotubes and their possible application in supercapacitors. Electrochemical and Solid State Letters, 1999. 2(11): p. 577-578.
    98. Frackowiak, E., K. Metenier, V. Bertagna, and F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Applied Physics Letters, 2000. 77(15): p. 2421-2423.
    99. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 1947. 41(3): p. 441-501.
    100. Nakamura, M., M. Nakanishi, and K. Yamamoto, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors. Journal of Power Sources, 1996. 60(2): p. 225-231.
    101. Fuertes, A.B., F. Pico, and J.M. Rojo, Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. Journal of Power Sources, 2004. 133(2): p. 329-336.
    102. Zheng, J.P., P.J. Cygan, and T.R. Jow, Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Journal of the Electrochemical Society, 1995. 142(8): p. 2699-2703.
    103. Zheng, J.P. and T.R. Jow, A New Charge Storage Mechanism for Electrochemical Capacitors. Journal of the Electrochemical Society, 1995. 142(1): p. L6-L8.
    104. Zheng, J.P. and T.R. Jow, A new charge storage mechanism for electrochemical capacitors and charge storage density vs crystalline structure of metal oxides. Materials for Electrochemical Energy Storage and Conversion - Batteries, Capacitors and Fuel Cells, 1995. 393: p. 439-444.
    105. Hu, C.C., K.H. Chang, M.C. Lin, and Y.T. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Letters, 2006. 6(12): p. 2690-2695.
    106. Li, H.F., R.D. Wang, and R. Cao, Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor. Microporous and Mesoporous Materials, 2008. 111(1-3): p. 32-38.
    107. Zheng, J.P., W.F. Benedict, H.J. Xu, S.X. Hu, T.M. Kim, M. Velicescu, M.H. Wan, K.F. Cofer, and L. Dubeau, Genetic Disparity between Morphologically Benign Cysts Contiguous to Ovarian Carcinomas Acid Solitary Cystadenomas. Journal of the National Cancer Institute, 1995. 87(15): p. 1146-1153.
    108. Rarnani, M., B.S. Haran, R.E. White, and B.N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors. Journal of the Electrochemical Society, 2001. 148(4): p. A374-A380.
    109. Kim, H. and B.N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method. Journal of Power Sources, 2002. 104(1): p. 52-61.
    110. Hu, C.C. and Y.H. Huang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors. Journal of the Electrochemical Society, 1999. 146(7): p. 2465-2471.
    111. Chen, W.C., T.C. Wen, C.C. Hu, and A. Gopalan, Identification of inductive behavior for polyaniline via electrochemical impedance spectroscopy. Electrochimica Acta, 2002. 47(8): p. 1305-1315.
    112. Sugimoto, W., H. Iwata, Y. Yasunaga, Y. Murakami, and Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angewandte Chemie-International Edition, 2003. 42(34): p. 4092-4096.
    113. Sugimoto, W., T. Kizaki, K. Yokoshima, Y. Murakami, and Y. Takasu, Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta, 2004. 49(2): p. 313-320.
    114. Srinivasan, V. and J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. Journal of Power Sources, 2002. 108(1-2): p. 15-20.
    115. Hu, C.C., J.C. Chen, and K.H. Chang, Cathodic deposition of Ni(OH)(2) and Co(OH)(2) for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples. Journal of Power Sources, 2013. 221: p. 128-133.
    116. Choi, D., G.E. Blomgren, and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Advanced Materials, 2006. 18(9): p. 1178-+.
    117. Chen, Z., Y.C. Qin, D. Weng, Q.F. Xiao, Y.T. Peng, X.L. Wang, H.X. Li, F. Wei, and Y.F. Lu, Design and Synthesis of Hierarchical Nanowire Composites for Electrochemical Energy Storage. Advanced Functional Materials, 2009. 19(21): p. 3420-3426.
    118. Li, J.M., K.H. Chang, and C.C. Hu, The key factor determining the anodic deposition of vanadium oxides. Electrochimica Acta, 2010. 55(28): p. 8600-8605.
    119. Li, J.M., K.H. Chang, and C.C. Hu, A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors. Electrochemistry Communications, 2010. 12(12): p. 1800-1803.
    120. Hu, C.C. and T.W. Tsou, Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochimica Acta, 2002. 47(21): p. 3523-3532.
    121. Hu, C.C. and T.W. Tsou, Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochemistry Communications, 2002. 4(2): p. 105-109.
    122. Hu, C.C., Y.T. Wu, and K.H. Chang, Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: Determinant influence of oxidants. Chemistry of Materials, 2008. 20(9): p. 2890-2894.
    123. Toupin, M., T. Brousse, and D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 2004. 16(16): p. 3184-3190.
    124. Toupin, M., T. Brousse, and D. Belanger, Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chemistry of Materials, 2002. 14(9): p. 3946-3952.
    125. Fan, Z.J., J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, and F. Wei, A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials, 2010. 22(33): p. 3723-+.
    126. Li, W., F. Zhang, Y.Q. Dou, Z.X. Wu, H.J. Liu, X.F. Qian, D. Gu, Y.Y. Xia, B. Tu, and D.Y. Zhao, A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Advanced Energy Materials, 2011. 1(3): p. 382-386.
    127. Raymundo-Pinero, E., M. Cadek, M. Wachtler, and F. Beguin, Carbon Nanotubes as Nanotexturing Agents for High Power Supercapacitors Based on Seaweed Carbons. Chemsuschem, 2011. 4(7): p. 943-949.
    128. Zhao, L., L.Z. Fan, M.Q. Zhou, H. Guan, S.Y. Qiao, M. Antonietti, and M.M. Titirici, Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors. Advanced Materials, 2010. 22(45): p. 5202-+.
    129. Zhao, X.C., A.Q. Wang, J.W. Yan, G.Q. Sun, L.X. Sun, and T. Zhang, Synthesis and Electrochemical Performance of Heteroatom-Incorporated Ordered Mesoporous Carbons. Chemistry of Materials, 2010. 22(19): p. 5463-5473.
    130. Chen, C.M., Q. Zhang, C.H. Huang, X.C. Zhao, B.S. Zhang, Q.Q. Kong, M.Z. Wang, Y.G. Yang, R. Cai, and D.S. Su, Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors. Chemical Communications, 2012. 48(57): p. 7149-7151.
    131. Lv, Y., F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, and D. Zhao, A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. Journal of Materials Chemistry, 2012. 22(1): p. 93-99.
    132. Xu, G.H., C. Zheng, Q. Zhang, J.Q. Huang, M.Q. Zhao, J.Q. Nie, X.H. Wang, and F. Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors. Nano Research, 2011. 4(9): p. 870-881.
    133. Frackowiak, E., Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics, 2007. 9(15): p. 1774-1785.
    134. Yoon, S., J.W. Lee, T. Hyeon, and S.M. Oh, Electric double-layer capacitor performance of a new mesoporous carbon. Journal of the Electrochemical Society, 2000. 147(7): p. 2507-2512.
    135. Xing, W., S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, and H.M. Cheng, Superior electric double layer capacitors using ordered mesoporous carbons. Carbon, 2006. 44(2): p. 216-224.
    136. Liang, Y.R., D.C. Wu, and R.W. Fu, Preparation and Electrochemical Performance of Novel Ordered Mesoporous Carbon with an Interconnected Channel Structure. Langmuir, 2009. 25(14): p. 7783-7785.
    137. Wang, D.W., F. Li, M. Liu, G.Q. Lu, and H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angewandte Chemie-International Edition, 2008. 47(2): p. 373-376.
    138. Wei, L., M. Sevilla, A.B. Fuertes, R. Mokaya, and G. Yushin, Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011. 1(3): p. 356-361.
    139. Wang, D.W., F. Li, H.T. Fang, M. Liu, G.Q. Lu, and H.M. Cheng, Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport. Journal of Physical Chemistry B, 2006. 110(17): p. 8570-8575.
    140. Zhu, S.M., H.A. Zhou, M. Hibino, I. Honma, and M. Ichihara, Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Advanced Functional Materials, 2005. 15(3): p. 381-386.
    141. Dong, X.P., W.H. Shen, J.L. Gu, L.M. Xiong, Y.F. Zhu, H. Li, and J.L. Shi, A structure of MnO2 embedded in CMK-3 framework developed by a redox method. Microporous and Mesoporous Materials, 2006. 91(1-3): p. 120-127.
    142. Shen, J.M., A.D. Liu, Y. Tu, H. Wang, R.R. Jiang, J. Ouyang, and Y. Chen, Asymmetric deposition of manganese oxide in single walled carbon nanotube films as electrodes for flexible high frequency response electrochemical capacitors. Electrochimica Acta, 2012. 78: p. 122-132.
    143. Wang, W., S.R. Guo, K.N. Bozhilov, D. Yan, M. Ozkan, and C.S. Ozkan, Intertwined Nanocarbon and Manganese Oxide Hybrid Foam for High-Energy Supercapacitors. Small, 2013. 9(21): p. 3714-3721.
    144. Yan, J., Z.J. Fan, T. Wei, J. Cheng, B. Shao, K. Wang, L.P. Song, and M.L. Zhang, Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. Journal of Power Sources, 2009. 194(2): p. 1202-1207.
    145. Yan, J., Z.J. Fan, T. Wei, W.Z. Qian, M.L. Zhang, and F. Wei, Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon, 2010. 48(13): p. 3825-3833.
    146. Choi, B.G., M. Yang, W.H. Hong, J.W. Choi, and Y.S. Huh, 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. Acs Nano, 2012. 6(5): p. 4020-4028.
    147. Fang, B.Z., J.H. Kim, M. Kim, and J.S. Yu, Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell. Chemistry of Materials, 2009. 21(5): p. 789-796.
    148. Wang, X., Z.W. Chen, and A. Atkinson, Crack formation in ceramic films used in solid oxide fuel cells. Journal of the European Ceramic Society, 2013. 33(13-14): p. 2539-2547.
    149. Su, D.S. and G.Q. Sun, Nonprecious-Metal Catalysts for Low-Cost Fuel Cells. Angewandte Chemie-International Edition, 2011. 50(49): p. 11570-11572.
    150. Wu, Z.X., Y.Y. Lv, Y.Y. Xia, P.A. Webley, and D.Y. Zhao, Ordered Mesoporous Platinum@Graphitic Carbon Embedded Nanophase as a Highly Active, Stable, and Methanol-Tolerant Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2012. 134(4): p. 2236-2245.
    151. Balgis, R., G.M. Anilkumar, S. Sago, T. Ogi, and K. Okuyama, Nanostructured design of electrocatalyst support materials for high-performance PEM fuel cell application. Journal of Power Sources, 2012. 203: p. 26-33.
    152. Rolison, D.R., Catalytic nanoarchitectures - The importance of nothing and the unimportance of periodicity. Science, 2003. 299(5613): p. 1698-1701.
    153. Chen, Z.W., D. Higgins, A.P. Yu, L. Zhang, and J.J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 2011. 4(9): p. 3167-3192.
    154. Gasteiger, H.A., S.S. Kocha, B. Sompalli, and F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B-Environmental, 2005. 56(1-2): p. 9-35.
    155. Shao, Y.Y., J.H. Sui, G.P. Yin, and Y.Z. Gao, Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B-Environmental, 2008. 79(1-2): p. 89-99.
    156. Bianchini, C. and P.K. Shen, Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells. Chemical Reviews, 2009. 109(9): p. 4183-4206.
    157. Lin, F.H. and R.A. Doong, Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. Journal of Physical Chemistry C, 2011. 115(14): p. 6591-6598.
    158. Yin, H.F., Z. Ma, M.F. Chi, and S. Dai, Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation. Catalysis Today, 2011. 160(1): p. 87-95.
    159. Overbury, S.H., V. Schwartz, D.R. Mullim, W.F. Yan, and S. Dai, Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. Journal of Catalysis, 2006. 241(1): p. 56-65.
    160. Wu, Z.L., S.H. Zhou, H.G. Zhu, S. Dai, and S.H. Overbury, DRIFTS-QMS Study of Room Temperature CO Oxidation on AU/SiO2 Catalyst: Nature and Role of Different Au Species. Journal of Physical Chemistry C, 2009. 113(9): p. 3726-3734.
    161. Ma, G.C., A. Binder, M.F. Chi, C. Liu, R.C. Jin, D.E. Jiang, J. Fan, and S. Dai, Stabilizing gold clusters by heterostructured transition-metal oxide-mesoporous silica supports for enhanced catalytic activities for CO oxidation. Chemical Communications, 2012. 48(93): p. 11413-11415.
    162. Tian, C.C., S.H. Chai, D.R. Mullins, X. Zhu, A. Binder, Y.L. Guo, and S. Dai, Heterostructured BaSO4-SiO2 mesoporous materials as new supports for gold nanoparticles in low-temperature CO oxidation. Chemical Communications, 2013. 49(33): p. 3464-3466.
    163. Seo, J.S., D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, and K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 2000. 404(6781): p. 982-986.
    164. Joo, S.H., S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles (vol 412, pg 169, 2001). Nature, 2001. 414(6862): p. 470-470.
    165. Cheng, F.Y. and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012. 41(6): p. 2172-2192.
    166. Neburchilov, V., H.J. Wang, J.J. Martin, and W. Qu, A review on air cathodes for zinc-air fuel cells. Journal of Power Sources, 2010. 195(5): p. 1271-1291.
    167. Zhang, S.S., D. Foster, and J. Read, Discharge characteristic of a non-aqueous electrolyte Li/O-2 battery. Journal of Power Sources, 2010. 195(4): p. 1235-1240.
    168. Kraytsberg, A. and Y. Ein-Eli, Review on Li-air batteries-Opportunities, limitations and perspective. Journal of Power Sources, 2011. 196(3): p. 886-893.
    169. Eswaran, M., N. Munichandraiah, and L.G. Scanlon, High Capacity Li-O-2 Cell and Electrochemical Impedance Spectroscopy Study. Electrochemical and Solid State Letters, 2010. 13(9): p. A121-A124.
    170. Mirzaeian, M. and P.J. Hall, Characterizing capacity loss of lithium oxygen batteries by impedance spectroscopy. Journal of Power Sources, 2010. 195(19): p. 6817-6824.
    171. Su, D.S., J. Zhang, B. Frank, A. Thomas, X.C. Wang, J. Paraknowitsch, and R. Schlogl, Metal-Free Heterogeneous Catalysis for Sustainable Chemistry. Chemsuschem, 2010. 3(2): p. 169-180.
    172. Wang, L.F., J.J. Delgado, B. Frank, Z. Zhang, Z.C. Shan, D.S. Su, and F.S. Xiao, Resin-Derived Hierarchical Porous Carbon Spheres with High Catalytic Performance in the Oxidative Dehydrogenation of Ethylbenzene. Chemsuschem, 2012. 5(4): p. 687-693.
    173. http://en.wikipedia.org/wiki/Phenol_formaldehyde_resin.
    174. Fan, S.Q., B. Fang, J.H. Kim, B. Jeong, C. Kim, J.S. Yu, and J. Ko, Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells. Langmuir, 2010. 26(16): p. 13644-13649.
    175. Fang, B., M.S. Kim, J.H. Kim, S. Lim, and J.S. Yu, Ordered multimodal porous carbon with hierarchical nanostructure for high Li storage capacity and good cycling performance. Journal of Materials Chemistry, 2010. 20(45): p. 10253-10259.
    176. Li, Q., R.R. Jiang, Y.Q. Dou, Z.X. Wu, T. Huang, D. Feng, J.P. Yang, A.S. Yu, and D.Y. Zhao, Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon, 2011. 49(4): p. 1248-1257.
    177. Xie, Z.L., R.J. White, J. Weber, A. Taubert, and M.M. Titirici, Hierarchical porous carbonaceous materials via ionothermal carbonization of carbohydrates. Journal of Materials Chemistry, 2011. 21(20): p. 7434-7442.
    178. Xu, H.A., Q.M. Gao, H.L. Guo, and H.L. Wang, Hierarchical porous carbon obtained using the template of NaOH-treated zeolite beta and its high performance as supercapacitor. Microporous and Mesoporous Materials, 2010. 133(1-3): p. 106-114.
    179. Su, F.B., X.S. Zhao, Y. Wang, J.H. Zeng, Z.C. Zhou, and J.Y. Lee, Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. Journal of Physical Chemistry B, 2005. 109(43): p. 20200-20206.
    180. Chen, C.M., Q. Zhang, X.C. Zhao, B.S. Zhang, Q.Q. Kong, M.G. Yang, Q.H. Yang, M.Z. Wang, Y.G. Yang, R. Schlogl, and D.S. Su, Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage. Journal of Materials Chemistry, 2012. 22(28): p. 14076-14084.
    181. Huang, C.H., R.A. Doong, D. Gu, and D.Y. Zhao, Dual-template synthesis of magnetically-separable hierarchically-ordered porous carbons by catalytic graphitization. Carbon, 2011. 49(9): p. 3055-3064.
    182. Liu, R.L., Y.F. Shi, Y. Wan, Y. Meng, F.Q. Zhang, D. Gu, Z.X. Chen, B. Tu, and D.Y. Zhao, Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. Journal of the American Chemical Society, 2006. 128(35): p. 11652-11662.
    183. Zhu, Y.W., S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff, Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, 2011. 332(6037): p. 1537-1541.
    184. Banham, D., F.X. Feng, J. Burt, E. Alsrayheen, and V. Birss, Bimodal, templated mesoporous carbons for capacitor applications. Carbon, 2010. 48(4): p. 1056-1063.
    185. Dong, X.C., G.C. Xing, M.B. Chan-Park, W.H. Shi, N. Xiao, J. Wang, Q.Y. Yan, T.C. Sum, W. Huang, and P. Chen, The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications. Carbon, 2011. 49(15): p. 5071-5078.
    186. Guo, C.X. and C.M. Li, A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy & Environmental Science, 2011. 4(11): p. 4504-4507.
    187. Huang, W.T., H. Zhang, Y.Q. Huang, W.K. Wang, and S.C. Wei, Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011. 49(3): p. 838-843.
    188. Lei, Z.B., N. Christov, and X.S. Zhao, Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy & Environmental Science, 2011. 4(5): p. 1866-1873.
    189. Aboutalebi, S.H., A.T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H.K. Liu, and S.X. Dou, Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science, 2011. 4(5): p. 1855-1865.
    190. Liu, X.M., Y.L. Wang, L.A. Zhan, W.M. Qiao, X.Y. Liang, and L.C. Ling, Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. Journal of Solid State Electrochemistry, 2011. 15(2): p. 413-419.
    191. Nian, Y.R. and H.S. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. Journal of the Electrochemical Society, 2002. 149(8): p. A1008-A1014.
    192. Oda, H., A. Yamashita, S. Minoura, M. Okamoto, and T. Morimoto, Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor. Journal of Power Sources, 2006. 158(2): p. 1510-1516.
    193. Itagaki, M., Y. Hatada, I. Shitanda, and K. Watanabe, Complex impedance spectra of porous electrode with fractal structure. Electrochimica Acta, 2010. 55(21): p. 6255-6262.
    194. Hadzijordanov, S., H. Angersteinkozlowska, M. Vukovic, and B.E. Conway, Reversibility and Growth-Behavior of Surface Oxide-Films at Ruthenium Electrodes. Journal of the Electrochemical Society, 1978. 125(9): p. 1471-1480.
    195. Meher, S.K. and G.R. Rao, Ultralayered Co3O4 for High-Performance Supercapacitor Applications. Journal of Physical Chemistry C, 2011. 115(31): p. 15646-15654.
    196. Wei, T.Y., C.H. Chen, K.H. Chang, S.Y. Lu, and C.C. Hu, Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009. 21(14): p. 3228-3233.
    197. Wei, T.Y., C.H. Chen, H.C. Chien, S.Y. Lu, and C.C. Hu, A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Advanced Materials, 2010. 22(3): p. 347-+.
    198. Xia, X.H., J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, and X.B. Zhao, Three-Dimentional Porous Nano-Ni/Co(OH)(2) Nanoflake Composite Film: A Pseudocapacitive Material with Superior Performance. Journal of Physical Chemistry C, 2011. 115(45): p. 22662-22668.
    199. Chang, K.H., C.C. Hu, C.M. Huang, Y.L. Liu, and C.I. Chang, Microwave-assisted hydrothermal synthesis of crystalline WO3-WO3 0 5H(2)O mixtures for pseudocapacitors of the asymmetric type. Journal of Power Sources, 2011. 196(4): p. 2387-2392.
    200. Lee, H.Y. and J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 1999. 144(1): p. 220-223.
    201. Pang, S.C., M.A. Anderson, and T.W. Chapman, Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 2000. 147(2): p. 444-450.
    202. Khomenko, V., E. Raymundo-Pinero, and F. Beguin, Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium. Journal of Power Sources, 2006. 153(1): p. 183-190.
    203. Komaba, S., A. Ogata, and T. Tsuchikawa, Enhanced supercapacitive behaviors of birnessite. Electrochemistry Communications, 2008. 10(10): p. 1435-1437.
    204. Xu, C.J., B.H. Li, H.D. Du, F.Y. Kang, and Y.Q. Zeng, Supercapacitive studies on amorphous MnO2 in mild solutions. Journal of Power Sources, 2008. 184(2): p. 691-694.
    205. Lei, Z.B., J.T. Zhang, and X.S. Zhao, Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. Journal of Materials Chemistry, 2012. 22(1): p. 153-160.
    206. Patel, M.N., X.Q. Wang, D.A. Slanac, D.A. Ferrer, S. Dai, K.P. Johnston, and K.J. Stevenson, High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. Journal of Materials Chemistry, 2012. 22(7): p. 3160-3169.
    207. Subramanian, V., H.W. Zhu, and B.Q. Wei, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochemistry Communications, 2006. 8(5): p. 827-832.
    208. Xie, X.F. and L. Gao, Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method. Carbon, 2007. 45(12): p. 2365-2373.
    209. Fischer, A.E., K.A. Pettigrew, D.R. Rolison, R.M. Stroud, and J.W. Long, Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Letters, 2007. 7(2): p. 281-286.
    210. Ma, S.B., Y.H. Lee, K.Y. Ahn, C.M. Kim, K.H. Oh, and K.B. Kim, Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. Journal of the Electrochemical Society, 2006. 153(1): p. C27-C32.
    211. Zhang, L.L., T.X. Wei, W.J. Wang, and X.S. Zhao, Manganese oxide-carbon composite as supercapacitor electrode materials. Microporous and Mesoporous Materials, 2009. 123(1-3): p. 260-267.
    212. Fan, Z.J., J. Yan, T. Wei, L.J. Zhi, G.Q. Ning, T.Y. Li, and F. Wei, Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011. 21(12): p. 2366-2375.
    213. Wu, Z.S., W.C. Ren, D.W. Wang, F. Li, B.L. Liu, and H.M. Cheng, High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. Acs Nano, 2010. 4(10): p. 5835-5842.
    214. Chen, W., Z.L. Fan, L. Gu, X.H. Bao, and C.L. Wang, Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010. 46(22): p. 3905-3907.
    215. Lee, S.W., J. Kim, S. Chen, P.T. Hammond, and Y. Shao-Horn, Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors. Acs Nano, 2010. 4(7): p. 3889-3896.
    216. Ma, S.B., K.Y. Ahn, E.S. Lee, K.H. Oh, and K.B. Kim, Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon, 2007. 45(2): p. 375-382.
    217. Deng, L.J., G. Zhu, J.F. Wang, L.P. Kang, Z.H. Liu, Z.P. Yang, and Z.L. Wang, Graphene-MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. Journal of Power Sources, 2011. 196(24): p. 10782-10787.
    218. Liu, C.L., K.H. Chang, C.C. Hu, and W.C. Wen, Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors. Journal of Power Sources, 2012. 217: p. 184-192.
    219. Gao, Q., L. Demarconnay, E. Raymundo-Pinero, and F. Beguin, Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy & Environmental Science, 2012. 5(11): p. 9611-9617.
    220. Lee, J.S., S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, and J. Cho, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011. 1(1): p. 34-50.
    221. Zhang, J.A., D.S. Su, R. Blume, R. Schlogl, R. Wang, X.G. Yang, and A. Gajovic, Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steam-Free Dehydrogenation of Ethylbenzene. Angewandte Chemie-International Edition, 2010. 49(46): p. 8640-8644.
    222. Zhang, J., X. Liu, R. Blume, A.H. Zhang, R. Schlogl, and D.S. Su, Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science, 2008. 322(5898): p. 73-77.
    223. Qi, W., W. Liu, B.S. Zhang, X.M. Gu, X.L. Guo, and D.S. Su, Oxidative Dehydrogenation on Nanocarbon: Identification and Quantification of Active Sites by Chemical Titration. Angewandte Chemie-International Edition, 2013. 52(52): p. 14224-14228.
    224. Silva, R., D. Voiry, M. Chhowalla, and T. Asefa, Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and O-Doped Mesoporous Carbons. Journal of the American Chemical Society, 2013. 135(21): p. 7823-7826.
    225. Gorlin, Y., B. Lassalle-Kaiser, J.D. Benck, S. Gul, S.M. Webb, V.K. Yachandra, J. Yano, and T.F. Jaramillo, In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society, 2013. 135(23): p. 8525-8534.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE