研究生: |
楊薰迪 Yang, Hsun-Ti |
---|---|
論文名稱: |
A map of Drosophila mushroom body neuronal connectivity 果蠅蕈狀體神經網路系統連結圖譜 |
指導教授: |
江安世
Chiang, Ann-Shyn |
口試委員: |
陳令儀
傅在峰 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 果蠅 、蕈狀體 |
外文關鍵詞: | Drsophila, Mushroom body, GRASP, MB extrinsic neurons |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The mushroom body (MB) is a prominent central brain structure in most insect. It has been known that a lot of behaviors, the well known is learning and memory, controlled by Drosophila MB. It has been known different Drosophila MB lobes have different functions in memory formation process. Recent studies show some MB connective neurons also play important roles, since they are upstream and downstream of MB, and some of them can modulate MB. Thus, addressing out of a MB extrinsic neurons circuit map is very important how the brain work. However, it is sometimes hard to distinguish from whether those neurons’ neurites are just passing the MB or really innervating the MB under limited resolution microscopes. A novel technique GRASP (GFP reconstitution across synaptic partners), can resolve this problem. This research used GRASP to screen out of MB extrinsic neurons and analyzed their polarities and sectors of fibers that innervate to MB lobes, depict a MB extrinsic neurons sector map, which affording important basic information to understand the MB neuronal circuit, and the brain working model; promoting the future research from lobes to sectors.
蕈狀體是一在大部分的昆蟲中一主要且重要的中樞神經結構。先前研究已知,果蠅蕈狀體控制許多行為,特別是學習與記憶,已熟為人知。先前研究報導,果蠅蕈狀體不同的葉片參與不同形式的記憶形成過程。最近研究也指出一些與果蠅蕈狀體相連的神經細胞也同樣有重要的角色;因為他們是蕈狀體的上下游細胞,且有些可修飾蕈狀體的訊息。故,解出果蠅蕈狀體外來的神經細胞圖譜是項很重要的工作。然而,有時很難辨別這些神經纖維是否有真正深入蕈狀體或只是經過而已。綠色螢光蛋白改編跨越突觸搭檔 (GFP reconstitution across synaptic partners, GFP) 可解決此問題。此研究利用GRASP技術篩選出蕈狀體外來的神經細胞,並分析它們的極性及分佈於蕈狀體葉片所形成的區塊;提供了闡明果蠅蕈狀體神經網路圖譜及大腦運作模型的基礎重要資訊,並促進未來的研究從果蠅蕈狀體葉片的尺度縮小到區塊。
Acevedo SF., Froudarakis EI., Tsiorva AA. and Skoulakis EM. 2007. Distinct neuronal circuits mediate experience-dependent, non-associative osmotactic responses in Drosophila. Mol Cell Neurosci. 34:378–389.
Akalal D-BG., Yu D., and Davis RL. 2010. A late-phase, long-term memory trace forms in the g neurons of Drosophila mushroom bodies after olfactory classical conditioning. J. Neurosci. 30:16699–16708.
Akalal D-BG., Yu, D., and Davis, R.L. 2011. The long-term memory trace formed in the Drosophila α/β mushroom body neurons is abolished in long-term memory mutants. J. Neurosci., in press.
Aso Y., Siwanowicz I, Bräcker L., Ito K., Kitamoto T. and Tanimoto H. 2010. Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol. 20(16):1445-51.
Besson M and Martin JR. 2005. Centrophobism/thigmotaxis, a new role for the mushroom bodies in Drosophila. J Neurobiol. 62:386–396.
Brembs B. and Wiener J. 2006. Context and occasion setting in Drosophila visual learning. Learn Mem. 13:618–628
Claridge-Chang A., Roorda RD., Vrontou E., Sjulson L., Li H., Hirsh J. and
Miesenböck G. 2009. Writing memories with light-addressable reinforcement circuitry. Cell. 139(2):405-15.
Dean T. and Sehgal A. 2009. New routes for memory retrieval and reinforcement. Cell.139(2):225-7.
Dubnau J., Grady L., Kitamoto T. and Tully T. 2001. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature. 411:476-480.
Feinberg EH., Vanhoven MK., Bendesky A., Wang G., Fetter RD., Shen K. and Bargmann CI. 2008. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron. 7(3):353-63
Gordon MD. and Scott K. Motor Control in a Drosophila Taste. 2008. Neuron. 61:373-384.
Hinke W. 1961. Das relative postembryonale wachstum der hirnteile von Culex pipiens, Drosophila melanogaster und Drosophila-mutanten. Z Morphol Ikol Tiere. 50:81-118.
Ito K., Suzuki K., Estes P., Ramaswami M., Yamamoto D., and Strausfeld NJ. 1998. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila Melanogaster Meigen. Learn Mem. 5:52-77.
Joiner MA. and Griffith LC. 1999. Mapping of the anatomical circuit of CaM kinase-dependent courtship conditioning in Drosophila. Learn Mem. 6:177-192.
Joiner WJ. and Crocker A. White BH. and Sehgal A. 2006. Sleep in Drosophila is regulated by adult mushroom bodies. Nature. 441:757-760.
Keene AC., Krashes MJ., Leung B., Bernard JA., and Waddell S. 2006.
Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr Biol. 16(15):1524-30.
Keleman K' Kruttner S., Alenius M. and Dickson BJ. 2007. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci. 10:1587–1593.
Lee T., Lee A. and Luo L. 1999. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development. 126:4065-4076.
Lin HH., Lai JS., Chin AL., Chen YC and Chiang AS. 2007. A map of olfactory representation in the Drosophila mushroom body. Cell. 128:1205-1217.
Li Y. and Strausfeld NJ. 1999. Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies. J Comp Neurol. 409:647-663.
Liu L., Wolf R., Ernst R. and Heisenberg M. 1999. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature. 400:753-756.
Liu X., and Davis RL. 2009. The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning. Nat. Neurosci. 12:53-59.
Martin JR., Ernst R. and Heisenberg M. 1998. Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem. 5:179-191.
McBride SM., Giuliani G., Choi C., Krause P., Correale D., Watson K., Baker G. and Siwicki KK. 1999. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron. 24:967-977.
Mizunami M., Weibrecht JM. and Strausfeld NJ. 1998. Mushroom bodies of the cockroach: their participation in place memory. J Comp Neurol. 402:520-537.
Noveen A., Daniel A., and Hartenstein V. 2000. Early development of the Drosophila mushroom body: the roles of eyeless and dachshund. Development. 127:3475-3488.
erez-Orive J., Mazor O., Turner GC., Cassenaer S., Wilson RI and Laurent G. 2002. Oscillations and sparsening of odor representations in the mushroom body. Science. 297:359-365.
Pitman JL., McGill JJ., Keegan KP. and Allada R. 2006. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature. 441:753-756
Pitman JL., Huetteroth W., Burke CJ., Krashes MJ., Lai SL., Lee T., and Waddell S. 2011. A pair of inhibitory neurons are required to sustain labile memory in the Drosophila mushroom body. Curr Biol. 21(10):855-61.
Riemensperger, T., Vo¨ ller, T., Stock, P., Buchner, E., and Fiala, A. 2005. Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol. 15:1953-1960.
Siwicki KK. and Ladewski L. 2003. Associative learning and memory in Drosophila: beyond olfactory conditioning. Behav Process. 64:225-238.
Strausfeld NJ., Sinakevitch I. and Vilinsky I. The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes. 2003. Microsc Res Tech. 62(2):151-69.
Tanaka NK., Tanimoto H., and Ito K. 2008. Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol. 508(5):711-55.
Tang S and Guo A. 2001. Choice behavior of Drosophila facing contradictory visual cues. Science. 294:1543-1547.
Waddell S., Armstrong JD., Kitamoto T., Kaiser K and Quinn WG. 2000. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell. 103(5):805-13.
Wu CL., Shih MF., Lai JS., Yang HT., Turner GC., Chen L., and Chiang AS. 2011.
Heterotypic gap junctions between two neurons in the drosophila brain are critical for memory. Curr Biol. 21(10):848-54.
Zars T., Fischer M., Schulz R. and Heisenberg M. 2000. Localization of a short-term memory in Drosophila. Science. 288(5466):672-5.
Zhu S., Chiang AS., and Lee T. 2003. Development of the Drosophila mushroom bodies: elaboration, remodeling and spatial organization of dendrites in the calyx. Development. 130(12):2603-10.