簡易檢索 / 詳目顯示

研究生: 陳頤承
Yi-Chan Chen
論文名稱: 添加鑭系元素(Nd,La)之鈦酸鉍薄膜指向控制於非揮發性鐵電記憶體應用之研究
Orientation control of Lanthanide (Nd,La)-substituted Bismuth Titanate Thin Films for Non-volatile Ferroelectric Random Access Memory Applications
指導教授: 甘炯耀
Jon-Yiew Gan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 212
中文關鍵詞: 鐵電材料鈦酸鉍鐵電記憶體
外文關鍵詞: ferroelectric materials, Bismuth Titanate, Ferroelectric Random Access Memory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本文主要是研究添加鑭系元素釹(Nd) 、鑭(La)之鈦酸鉍鐵電薄膜(Bi4-xLnxTi3O12,BLnT)指向控制於非揮發性鐵電記憶體之應用。其鐵電薄膜是利用化學溶液旋鍍法(chemical solution deposition,CSD)於白金基板(Pt/TiOx/SiO2/Si)上鍍覆所得到,實驗中發現薄膜之結晶結構會隨著鑭系元素添加量的多寡 結晶化溫度不同及結晶化時初鍍薄膜厚度不同而有所改變。在本論文中亦提出一晶粒成長模型用於解釋不同結晶指向薄膜成長行為。同時探討不同結晶指向之BLnT鐵電薄膜表面微觀結構、介電特性、漏電行為、及鐵電特性之差異。並且利用不同的鑭系元素的添加來驗證晶粒成長模型是否依然適用。
    不同釹含量之鈦酸鉍鐵電薄膜(Bi4-xNdxTi3O12,BNdT)於640℃低溫熱處理條件下,即可完全轉變成具有層狀鈣鈦礦結構之多晶薄膜,而薄膜內部之晶粒會隨著熱處理的上升而逐漸長大,薄膜的結晶結構會由非C軸指向轉變成C軸指向,而晶粒形貌亦會從長軸晶粒轉變成平板狀晶粒,而C軸指向的晶粒成長會受到釹元素的添加而被抑制。並且薄膜的電性也強烈受到熱處理溫度和釹元素添加量的不同而有所不同,在最佳熱處理溫度為680℃,而且薄膜內部釹含量達X=0.75時,薄膜的鐵電性質達到最好,其殘留極化量(remanent polarization;2Pr)為38μC/cm2,且矯頑電場為98kV/cm。
    同時也選用在最佳熱處理溫度為680℃條件下,進行不同層數之BNdT鐵電薄膜熱處理程序實驗,來探討結晶化時初鍍薄膜厚度不同對薄膜結晶結構之影響。在利用分層熱處理方式時,可以得到具有a軸優選指向的薄膜,採用兩層熱處理方式,則得到具有(117)優選指向的薄膜,而採用12層熱處理方式,可以得到具有多種結晶指向的薄膜,根據本論文所提的晶粒成長模型,其中可以發現(117)晶粒成長是會受到薄膜厚度的尺寸效應而被抑制,而a軸晶粒成長則無此效應。並且利用分層熱處理方法所得到的BNdT鐵電薄膜具有最大殘留極化量、抗疲勞特性佳和不錯的電荷保持特性。
    添加鑭元素之鈦酸鉍鐵電薄膜(Bi4-xLaxTi3O12,BLT),其薄膜結晶行為與BNdT鐵電薄膜相同,在熱處理溫度為680℃,而且薄膜內部鑭元素含量達X=0.75時,薄膜的鐵電性質亦達到最好,其殘留極化量(remanent polarization,2Pr)為22.1μC/cm2,且矯頑電場為90.3 kV/cm。而且在不同層數之BLT鐵電薄膜熱處理程序實驗中,同樣地,(117)晶粒成長受到薄膜厚度的尺寸效應也於BLT鐵電薄膜中被觀察到,因此本文所提出的晶粒成長模型是不受不同鑭系元素添加所影響。不過,不同於BNdT鐵電薄膜,利用分層熱處理方法所得到的BLT鐵電薄膜的殘留極化量較經兩層熱處理方式所的薄膜還來的小,其主要原因是經分層熱處理的BLT鐵電薄膜內部含有為數不少不具極化貢獻的(010)指向晶粒所致。


    Abstract

    Orientation control of lanthanide (Nd, La)-substituted bismuth titanate thin films (Bi4-xLnxTi3O12, BLnT) for nonvolatile ferroelectric random access memory applications was investigated in this research. The BLnT thin films were prepared on Pt/TiOx/SiO2/Si using chemical solution deposition (CSD) technique. The crystal structure of BLnT thin films was found to be changed with the different doping content of lanthanide elements, annealing temperatures and crystallization schemes. A probable grain growth model was provided to explain the orientation-dependent grain growth of BLnT thin films. The surface structure, dielectric, leakage current and ferroelectric properties of different oriented BLnT thin films were also examined in this work. The different lanthanide element doping of BLnT films was also used to demonstrate the orientation-dependent grain growth model of thin films.
    Regarding to Nd-substituted bismuth titanate, Bi4-xNdxTi3O12 (BNdT) thin films were crystallized with layered perovskite phase and no second phase was observed in films when the annealing temperature was above 640℃, and the grain size was considerably increased as the annealing temperature increased. At low crystallization temperature, the films tend to be dominated with off-c-axis grains, but become to crystallize with c-axis-oriented at higher temperature due to the change of nucleation at the electrode interface. In addition, Nd addition seems to retard the grain growth of BNdT thin films. The electric behaviors of BNdT films are also dependent on the different annealing temperature and Nd doping content. For example, the best ferroelectric properties were observed for Bi3.25Nd0.75Ti3O12 films crystallized at 680℃ with 2Pr and Ec to be 38 μC/cm2 and 98 kV/cm respectively.
    Crystallization behavior of Bi3.5Nd0.5Ti3O12 thin films was found to change with the crystallization schemes applied. Enhanced a-axis-oriented crystal growth occurred when Bi3.5Nd0.5Ti3O12 films derived with layer-by-layer crystallization. In contrast, the films derived with 12-layer crystallization were dominated by random diffractions. Examination of structural evolution of Bi3.5Nd0.5Ti3O12 films has indicated that, owing to the geometrical effect, the growth of (117)-oriented crystals was restricted by the layer thickness, while the growth of a-axis-oriented crystals was not. BNdT films derived with layer-by-layer crystallization generally show high remanent polarization, fatigue resistance, and better endurance.
    Compared to BNdT films, similar trend was also found for the La-substituted bismuth titanate (Bi4-xLaxTi3O12, BLT) thin films in terms of the crystallization temperature and La addition. In addition, layer-by-layer crystallization also applies to BLT films, but the ferroelectric response was not optimized as much as BNdT, suggesting the delicate effect of lanthanide addition to the bismuth titanate with different element.

    Contents ABSTRCT (Chinese)……………………………………………………I ABSTRCT (English)………………………………………………...…IV DEDICATION…………………………………………………………VI ACKNOWLEDGEMENT (Chinese)………………………………...VII CONTENTS…….…………….……………………………………...IX LIST OF TABLES…………………………………………………...XIII LIST OF FIGURES……………….………………………..………..XIV CHAPTER 1 Introduction……………………………….……………...……..1 1.1 Nonvolatile Memories---Ferroelectric Random Access Memory (FeRAM)………………………………………………………..…..1 1.2 Motivation and organization of this Dissertation……………………….....3 References……………………………………………………………………..….7 CHAPTER 2 Background study……………………………….…………...13 2.1 Ferroelectric materials………………….…………...…………………….13 2.2 Type of Ferroelectric Random Access Memories (FeRAMs)……….......15 2.2.1 Destructive read-out (DRO) FeRAM………………………..……17 2.2.2 Nondestructive Read-Out (NDRO) FeRAM…………………..…18 2.3 Candidates of Ferroelectric Materials for FeRAM device Application...19 2.3.1 Lead zirconate titanate (PbZrxTi1-xO3, PZT) …………………….19 2.3.2 Strontium bismuth tantalite (SrBi2Ta2O9, SBT).............................21 2.3.3 Bismuth titanate (Bi4Ti3O12, BiT) and Lanthanide-substituted bismuth titanate (Bi4-xLnxTi3O12, Ln=La, Sm, Nd, Pr)………….22 2.4 Crystallization behaviors of bismuth layered-structure films…………..25 References……………………………………………………………………....28 CHAPTER 3 Processes and Characterization ………………………….49 3.1 Processes…………………………………………………………………...49 3.1.1 Substrate preparation……………………………………………….49 3.1.2 Chemical solution preparation……………………...………………50 3.1.3 Ferroelectric thin films deposition………………………………….51 3.1.4 Capacitor fabrication………………………………………………..52 3.2 Characterization…………………………………………………………...52 3.2.1 Material properties…………………………………………………52 3.2.1.1 XRD, GIXD …………………………………………………52 3.2.1.2 Raman spectroscope………………………………………...53 3.2.1.3 SEM…………………………………..……………………....54 3.2.2 Electrical properties………………………………………………..54 3.2.3 Ferroelectric measurement.………………………………………..55 References……………………………………………………….……………..59 CHAPTER 4 Enhanced a-axis-oriented crystal growth of Nd-substituted bismuth titanate thin films with layer-by-layer crystallization…………………………81 4.1 Introduction……………………………………………………………….83 4.2 Experimental Details……………………………………………………..85 4.3 Results and discussion..……………………………………………….….86 A. Structure and surface morphology………………………………....86 B. Electrical properties………………………………………………....89 C. Growth mechanism for layer-by-layer crystallization………………..92 4.4 Conclusion.……………………………………………………………….94 References………………………………………………………………….….95 CHAPTER 5 Crystallization behaviors of Neodymium -substituted bismuth titanate thin films……………………………….109 5.1 Introduction……………………………………………………………….111 5.2 Experimental Details……………………………………………………..113 5.3 Results and discussion……………………………………………………114 A. Structural ………………………………………………………………114 B. Dielectric and ferroelectric properties………………………………...118 5.4 Conclusion..……………………………………………………………….122 References…………………………………………………………………….123 CHAPTER 6 Crystallization behavior and ferroelectric properties of La- substituted bismuth titanate................................135 6.1 Introduction…………………………………………………………….…136 6.2 Experimental Details……………………………………………………..137 6.3 Results and discussion……………………………………………………138 6.3.1 The varied La doping content and thermal annealing effects on the crystallization behavior of Bi4-xLaxTi3O12 thin films…………….139 6.3.2 The crystallization behaviors of Bi3.25La0.75Ti3O12 thin films derived with different crystallization schemes……………………………143 6.4 Conclusion....……………………………………………………………...148 References…………………………………………………………………….150 CHAPTER 7 Summary and suggestions for future study...............167 References…………………………………………………………………….170 Appendix 1 Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes ............................................................................................175 Appendix 2 Characterization of Pt-Oxide thin film Fabricated by Novel Plasma Immersion Ion Implantation Technology ............................................................................................195 LIST OF TABLES Table 1-1 The comparisons of FeRAM, MRAM, and CRAM………………….…8 Table 1-2 The technology requirements of FeRAM development in the near-term was provided by ITRS 2003..…………………………………………....9 Table 2-1 State of the art in nonvolatile memory technologies.........................34 Table 2-2 Prospect of several integrated ferroelectric devices……………….….35 Table 2-3 Properties of PZT, SBT, and BLT thin films prepared on conventional Pt electrodes……………………………………………………………..36 Table 3-1 Standard RCA cleaning Process (RCA 1) ……………………………..60 Table 3-2 The deposition recipe of Platinum (Pt) and Titanium oxide (TiOx) thin films………………………………………………………………………61 Table 3-3 Detail chemical information about the precursors of bismuth titanate (or Lanthanide-substituted bismuth titanate solution) ……………….62 LIST OF FIGURES Figure 1-1 Schematic views of FRAM cell structure (a) Two Transistor-Tow Capacitor ( 2T-2C), and (b) One Transistor-One Capacitor (1T-1C).10 Figure 1-2 Schematic drawings of ferroelectric capacitor types of FeRAM (a) planar cell, (b) stack cell and (c) 3D cell……………………………….11 Figure 2-1 ABO3 perovskite unit cell………………………………………………37 Figure 2-2 Hysteresis loop of a ferroelectric material…………………………….38 Figure 2-3 First-order (a) and second-order (b) ferroelectric phase transition (is inverse dielectric susceptibility) ……………………………………….39 Figure 2-4 Cross sections of DRO FRAM cell structure in (a) low density device and (b) high density device………………..…………………….……..40 Figure 2-5 Reading procedure of DRO FRAM devices…………………….…….41 Figure 2-6 Schematic view of NDRO FRAM structure…………………….…….42 Figure 2-7 The sub-solidus phase diagram for PbZrO3-PbTiO3…………….…..43 Figure 2-8 Lattice structure of the Strontium bismuth tantalite…………….…..44 Figure 2-9 Lattice structure of the bismuth titanate and La-substituted bismuth titanate…………………………...………………………………………45 Figure 2-10 Schematic drawing of CaF2 unit cell…….…………………………...46 Figure 2-11 Schematic diagram showing that five unit cells of fluorite cube in a row is about the same as one unit cell of layered perovskite of SBT……………………………………………….……………………47 Figure 3-1 Cross-section image of Pt-coated silicon substrate.…………………..63 Figure 3-2 Schematic diagram of the dual guns RF-sputtering system in MPSE Laboratory………………………………………………………………64 Figure 3-3 The flow chart of chemical synthesis process for BLSF solution……65 Figure 3-4 Flow chart of the layer by layer crystallization technique………...…66 Figure 3-5 Flow chart of the two layer crystallization technique………………..67 Figure 3-6 Flow chart of the 12- layer crystallization technique………………...68 Figure 3-7 Cross-section image of BLSF thin films……………………………….69 Figure 3-8 The final structural drawing of BLSF device…………………………70 Figure 3-9 Schematic diagram of the θ-2θ scan type for powder XRD measurement……………………………………………………………71 Figure 3-10 Schematic drawing of the probe station made by SIGNASTONE has been used in this work……………………………………………….….72 Figure 3-11 Schematic drawing of Hewlett-Packard computer controlled-keithely mode (236/237) semiconductor parameter analyzer……………….…73 Figure 3-12 Schematic drawing of HP-4282A multi-frequency LCR meter….…74 Figure 3-13 Schematic diagrams of a Sawyer-Tower circuit………………….….75 Figure 3-14 Schematic drawing of IBM computer controlled-RT-66A testing system……………………………………………………………….…76 Figure 3-15 Schematic diagrams of a Virtual-ground circuit in RT-66A testing system…………………………………………………………….……77 Figure 3-16 Schematic drawing of (a) sequence of pluses in a standard switching test protocol (b) fatigue testing system………………………….…..78 Figure 3-17 (a) Schematic drawing of a sequential pulse and result in positive retention testing………………………………………………….……79 Figure 3-17 (b) Schematic drawing of a sequential pulse and result in negative retention testing…………………………………………………….…80 Figure 4-1 XRD spectra for BNdT films derived with layer-by-layer, two-layer, and 12-layer crystallization……………………………………………97 Figure 4-2 SEM photographs for BNdT films derived with (a) layer-by-layer, (b) two-layer and (c) 12-layer crystallization……..….…….……………..98 Figure 4-3 XRD spectra for BNdT films with 3, 6, 9, and 12 coatings prepared with layer-by-layer crystallization……………………………………..99 Figure 4-4 SEM photographs for BNdT films with 3, 6, 9, and 12 coatings prepared with layer-by-layer crystallization…………………….…100 Figure 4-5 The GIXD patterns of BNdT films derived with layer-by-layer crystallization for the incident angle from 0.1o to 0.5o……………101 Figure 4-6 Hysteresis loops and relation between double remanent polarization (2Pr), coercive field (2Ec) and the applied field of the BNdT films derived with different crystallization schemes…………………..…..102 Figure 4-7 Dielectric properties of the BNdT films derived with different crystallization schemes………………………………………………...103 Figure 4-8 Leakage current of the BNdT films derived with different crystallization schemes………………………………………………...104 Figure 4-9 Fatigue properties of the BNdT films derived with different crystallization schemes………………………………………………...105 Figure 4-10 The positive retention properties of the BNdT films derived with different crystallization schemes……….…………………………...106 Figure 4-11 Schematic drawing of (117)- and a-axis-oriented crystals lying in the film……………………………………………………………………107 Figure 5-1 XRD spectra of Bi4-xNdxTi3O12 with various Nd contents (x= 0, 0.30, 0.50, and 0.75) annealed at 640℃………………………………….….125 Figure 5-2 XRD spectra for (a) BiT, (b)BNdT (x=0.30), (c) BNdT (x=0.50), and (d) BNdT (x=0.75) films annealed at different temperatures…………..126 Figure 5-3 SEM photographs of BiT and BNdT (x=0.75) films: (a) &(b) samples annealed at 640℃; (c) &(d) samples annealed at 680℃; (e) &(f) samples annealed at 720℃……………….……………………………128 Figure 5-4 A SEM photograph of BNdT (x=0.50) films were annealed at 680℃…………………………………………………………………129 Figure 5-5 Raman spectra of BNdT films with different Nd doping content annealed at 640℃. A peak of A is representative of the Bi2O2 layer. B, C and D correspond to TiO6 octahedra…………………………130 Figure 5-6 Dielectric properties of the BNdT films with various Nd contents annealed at 680℃…………………………...……………………….131 Figure 5-7 Polarization hysteresis loops for (a) BiT, (b)BNdT (x=0.30), (c) BNdT (x=0.50), and (d) BNdT (x=0.75) films annealed at different temperature…………………………………………………….….…132 Figure 5-8 The relation between double remanent polarization (2Pr) and BNdT films with varied Nd doping contents annealed at different temperatures…………………………………………………………133 Figure 6-1 XRD spectra of Bi4-xLaxTi3O12 with various La contents (x= 0, 0.30, 0.50, and 0.75) annealed at 640℃...…………………………………..151 Figure 6-2 XRD spectra for (a) BiT, (b)BLT (x=0.30), (c) BLT (x=0.50), and (d) BLT (x=0.75) films crystallized at different temperatures..……..…152 Figure 6-3 SEM photographs of (a), (c), (e)BiT and (b), (d), (f)BLT (x=0.75) films: (a) &(b) samples crystallized at 640℃; (c) &(d) samples crystallized at 680℃; (e) &(f) samples crystallized at 720℃………………………..154 Figure 6-4 Dielectric properties of the BLT films with various La doping contents crystallized at 680℃………………..…………………………………155 Figure 6-5 Polarization hysteresis loops for (a) BiT, (b)BLT (x=0.30), (c) BLT (x=0.50), and (d) BLT (x=0.75) films annealed at different temperatures…………………………………..………………………156 Figure 6-6 The relation between double remanent polarization (2Pr) and BLT films with varied La doping contents annealed at different temperature……………………………………………………………157 Figure 6-7 The ferroelectric response of Bi3.5Nd0.5Ti3O12 and Bi3.25La0.75Ti3O12 films annealed at 680℃……………………………………………….158 Figure 6-8 The detail scan of (200) diffraction of Bi3.25La0.75Ti3O12 and Bi3.5Nd0.5Ti3O12 film………………………………………………159 Figure 6-9 The Dielectric response of Bi3.5Nd0.5Ti3O12 and Bi3.25La0.75Ti3O12 films annealed at 680℃…………………………………………………...160 Figure 6-10 XRD spectra for BLT films derived with layer-by-layer, two-layer, and 12-layer crystallization………………………………………..161 Figure 6-11 SEM photographs for BLT films derived with (a) layer-by-layer, (b) two-layer and (c) 12-layer crystallization….………………………162 Figure 6-12 Hysteresis loops and relation between double remanent polarization (2Pr), coercive field (2Ec) and the applied field of the BLT films with different crystallization schemes………………………..………….163 Figure 6-13 Dielectric properties of the BLT films with different crystallization schemes………………………………………………………………164 Figure 6-14 Leakage current of the BLT films with different crystallization schemes………………………………………………………………165 Figure 6-15 Fatigue properties of the BLT films with different crystallization schemes…………………………………………………………………166 Figure 6-16 Retention properties of the BLT films with different crystallization schemes…………………………………………………………………167 Figure 7-1 Schematic diagrams of supposed lattice matching image…………..173

    Chpater1
    Reference:
    [1] J. F. Scott, C. Paz de Araujo, Science 246, 100 (2000).
    [2] R. Ramesh, “Thin Film Ferroelectric Materials and Devices”, Kluwer Academic, London, (1997).
    [3] G. J. M. Dormans, P. K. Larsen, G. A. C. M. Spierings, J. Dikken, M. J. E. Ulenaers, R. Cuppens, D. J. Taylor and R. D. J. Verhaar, Integrated Ferroelectrics 6, 93 (1995).
    [4] H. Takasu, Integrated Ferroelectrics 14, 1 (1997).
    [5] S. Kobayashi, N. Tanabe, Y. Maejima, Y. Hayashi and T. Kunio, Integrated Ferroelectrics 17, 81 (1997).
    [6] Betty Prince, “Emerging Memories-Technologies and Trend”, Kluwer Academic Publishers, (2002).
    [7] K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, J. Vac. Sci. Technol. B 15, 2274 (1997).
    [8] S. H. Holmberg, R. R. Shanks and V. A. Bluhm, J. Electron Mater. 8, 333 (1979).
    [9] Kazuya Nakayama, Kazuhiko Kojima, Fumihito Hayakawa, Yutaka Imai, Akio Kitagawa and Masakuni Suzuki, Jpn. J. Appl. Phys. 39, 6157 (2000).
    [10] A. Kingon, Nature (London), 401, 658 (1999).
    Chapter 2
    References:

    [1] M. Lines and A. Glass, Principles and Applications of Ferroelectrics and Related Devices, Clarendon Press, Oxford, 87 (1977).
    [2] W. J. Merz, Phys. Rev. 76, 1221 (1949).
    [3] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, Phys. Rev., 107, 1255 (1957).
    [4] “FRAM Guide Book, Chapter 2”, Fujitsu Web Page <www.fujitsu.com>.
    [5] J. F. Scott, Phys. World (Febrary, 1995), 46.
    [6] D. Bondurant, Ferroelectrics, 112B, 273 (1990).
    [7] S. Shinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, J. Vac. Sci. Technol. A, 10(4), 1554 (1992).
    [8] B. Jaffe, W. R. Cooke Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971).
    [9] J. Hong, H. W. Song, H. C. Lee, W. J. Lee, and K. No, J. Appl. Phys. 90, 1692 (2001).
    [10] E. G. Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, Appl. Phys. Lett. 70, 2404 (1997).
    [11] C. S. Liang, J. M. Wu, and M. C. Chang, Appl. Phys. Lett. 81, 3624 (2002).
    [12] S. G. Yoon, A. I. Kingon, and S. H. Kim, J. Appl. Phys. 88, 6690 (2000).
    [13] S. Y. Chen, C. L. Sun, J. Appl. Phys. 90, 2970 (2001).
    [14] G. Asano, T. Oikawa, H. Funakubo and K. Saito, Jpn. J. Appl. Phys. 34, L1083 (2003).
    [15] K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T. Nakamura, and H. Takasu, Appl. Phys. Lett. 82, 1263 (2003).
    [16] Z. Huang, Q. Zhang, and R. W. Whatmore, J. Appl. Phys. 85 , 7355 (1999).
    [17] J.F. Scott, C.A. Araujo, B.M. Melnick, L.D. McMillan, R. Zuleeg, J. Appl. Phys. 70 , 382 (1991).
    [18] M. Dawber, J.F. Scott, Appl. Phys. Lett. 76, 1060 (2000).
    [19] K. Takemura, T. Sakuma and Y. Miyasaka, Appl. Phys. Lett. 64, 2967 (1994).
    [20] G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, Appl. Phys. Lett. 76, 1318 (2000).
    [21] T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, Jpn. J. Appl. Phys. 34, 5184 (1995).
    [22] W. S. Kim, J. W. Kim, H.H. Park, H. N. Lee, Jpn. J. Appl. Phys. 37, 7097 (2000).
    [23] K. B. Lee, B. R. Rhee, and C. K. Lee, Appl. Phys. Lett. 79, 821 (2001).
    [24] Y. C. Chen, Y. M. Sun, and J. Y. Gan, Thin solid films 460, 25 (2004).
    [25] M. S. Chen, T.B. Wu, J.M. Wu, Appl. Phys. Lett. 68, 1430 (1996).
    [26] G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J. Tang, and J. H. Chu, Appl. Phys. Lett. 79, 3476 (2001).
    [27] R. Dat, D. J. Lichtenwalner, 0. Auciello, and A. I. Kingon, Appl. Phys. Lett. 64, 2673 (1994).
    [28] H. D. Bhatt, S. B. Desu, D. P. Vijay, Y. S. Hwang, X. Zhang, and M. Nagata, and A.Grill, Appl. Phys. Lett. 71, 719 (1997).
    [29] G.A. Somolenskii, V.A. Isupov and A.I. Agranovskaya, Soviet Phys. Solid State, 1, 149 (1959).
    [30] G.A. Somolenskii, V.A. Isupov and A.I. Agranovskaya, Soviet Phys. Solid State, 3, 651 (1961).
    [31] E.C. Subbarao, J. Chem. Phys., 34, 695 (1961).
    [32] E.C. Subbarao, J. Am. Ceram. Soc., 45, 166 (1962).
    [33] S. Ikegami and E. Ueda, Jap. J. Appl. Phys., 13, 1572 (1974).
    [34] E. C. Subbarao, J. Phys. Chem. Solids, 23, 665 (1962).
    [35] J. F. Scott and C.A. Paz de Araujo, Science 246, 1400 (1989).
    [36] C. A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott and J.F. Scott, Nature (London) 374, 627 (1995).
    [37] S. B. Desu and D.P. Vijay, Mater. Sci. Engng. B 32, 75 (1995).
    [38] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).
    [39] T. Atsuki, N. Soyama, T. Yonezawa, and K. Ogi, Jap. J. Appl. Phys., 34, 5096 (1995).
    [40] T. Noguchi, T. Hase and Y. Miyasaka, Jap. J. Appl. Phys., 35, 4900 (1996).
    [41] H. Watanabe, T. Mihara, H. Yoshimori and, Carlos A. Paz de Araujo, Jap. J. Appl. Phys., 34, 5240 (1996).
    [42] S. E. Cummins and L. E. Cross, J. Appl. Phys., 39, 2268 (1968).
    [43] T. C. Joshi and S. B. Krupanidhi, Appl. Phys. Lett. 62, 1928 (1993).
    [44] T. Kijima, M. Ushikubo, and H. Matsunaga, Jap. J. Appl. Phys., 38, 127 (1999).
    [45] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).
    [46] T. Takenaka and K. Sakata, Ferroelectrics 38, 769–772 (1981).
    [47] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, Appl. Phys. Lett. 74, 1907 (1999).
    [48] Y. Ding, J. S. Liu, H. X. Qin, J. s. Zhu, and Wang, Appl. Phys. Lett. 78, 4175 (2001).
    [49] J. K. Lee, C. H. Kim, H. S. Suh, and K. S. Hong, Appl. Phys. Lett. 80, 3593 (2002).
    [50] M. W. Chu, M. Ganne, M. T. Caldes, and L. Brohan, J. Appl. Phys. 91, 3178 (2002).
    [51] T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K. Saito, and M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
    [52] H. Uchida, H. Yoshikawa, I. Okada, T. Sakai, T. Watanabe, T. Kojima, and H. Funkubo, Appl. Phys. Lett. 81, 2229 (2002).
    [53] T. Watanabe, T. Kojima, H. Funkubo, M. Osada, Y. Noguchi, and M. Miyayama, J. Appl. Phys. 93, 1518 (2002).
    [54] S. B. Desu, D. P. Vijay, X. Zhang and B. He, Appl. Phys. Lett. 69, 1719 (1996).
    [55] J. S. Lee, H. H. Kim, H. J. Kwon and Y. W. Jeong, Appl. Phys. Lett. 73, 166 (1998).
    [56] H. N. Lee, D. Hesse, N. Zakharov, S K. Lee, and U. Gösele, Science 296, 2006 (2002).
    [57] T. Watanabe, H. Funakubo, T. Watanabe, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, and M. Miyayama, Appl. Phys. Lett. 81, 1660 (2002).
    [58] A. Gruverman, Appl. Phys. Lett. 75, 1452 (1999).
    [59] A. Kingon, Nature (London), 401, 658 (1999).
    [60] S. J. Hyun, B. H. Park, S. D. Bu, J. H. Jung and T. W. Noh, Appl. Phys. Lett. 73, 2518 (1998).
    [61] J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, S. J. Hyun and T. W. Noh, Appl. Phys. Lett. 74, 2690 (1999).
    [62] T. J. Boyle, C. D. Buchheit, M. A. Rodriguez, H. N. Al-Shareef, B. A. Hernandez, B. Scott and J. W. Ziller, J. Mater. Res. 11, 2274 (1996).
    [63] T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa and A. Hashimoto, Jpn. J. Appl. Phys. 37, 597 (1998).
    [64] K. Ishikawa, N. Nukaga and H. Funakubo, Jpn. J. Appl. Phys. 38, L258 (1999).
    [65] R. Iijima, Appl. Phys. Lett. 79 (2001) 2240.
    [66] G.D. Hu, I.H. Wilson, J.B. Xu, W.Y. Cheung, S.P. Wong, H.K. Wong, Appl. Phys. Lett. 74 (1999) 1221.
    chapter 3
    References
    [1] Yu-Ming Sun, National Tsing-Hua Uninersity, Ph.D thesis (2003).
    [2] J. F.Scott, “Ferroelectric Memories”, (2000).
    [3] Betty Prince, “Emerging Memories-Technologies and Trends”, (2002).
    [4] keithely mode (236/237) semiconductor parameter analyzer Handbook.
    [5] RT-66A testing system Handbook, Radiant technologies Inc.

    Chapter 4
    References:
    [1] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).
    [2] U. Chou, K. B. Kim, H. M. Jang, and G. C. Yi, Appl. Phys. Lett. 79, 3137 (2001).
    [3] T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
    [4] U. Chon, J. S. Shim, and H. M. Jang., J. Appl. Phys. 93, 4769 (2003).
    [5] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, Appl. Phys. Lett. 79, 2791 (2001).
    [6] T. Watanabe, H. Funakubo, T. Watanabe, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, and M. Miyayama, Appl. Phys. Lett. 81, 1660 (2002).
    [7] H. N. Lee, D. Hesse, N. Zakharov, S K. Lee, and U. Gösele, Science 296, 2006 (2002).
    [8] Y. M. Sun, Y. C. Chen, J. Y. Gan, and J. C. Hwang, Jpn. J. Appl. Phys. 41, L892 (2002).
    [9] Y. M. Sun, Y. C. Chen, J. Y. Gan and J. C. Hwang, Appl. Phys. Lett. 81, 3221 (2002).
    [10] R. Iijima, Appl. Phys. Lett. 79, 2240 (2001).
    [11] G. D. Hu, I. H. Wilson, J. B. Xu, W. Y. Cheung, S. P. Wong, and H. K. Wong, Appl. Phys. Lett. 74, 1221 (1999).
    [12] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, 121 (1996).
    [13] D. H. Bao, T. W. Chiu, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Appl. Phys. 93, 497 (2003).
    [14] S. B. Desu, and D. P. Vijav, Mater. Sci. Eng., B 32, 83 (1995).
    [15] J. H. Choi, J. Y. Lee, and Y. T. Kim, Appl. Phys. Lett. 74, 2933 (1999).

    Chapter 5
    References:
    [1] J. F. Scott and C. A. Paz de Araujo, Science 246, 1400 (1989).
    [2] J. Hong, H. W. Song, H. C. Lee, W. J. Lee, and K. No, J. Appl. Phys. 90, 1692 (2001).
    [3] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).
    [4] U. Chou, K. B. Kim, H. M. Jang, and G. C. Yi, Appl. Phys. Lett. 79, 3137 (2001).
    [5] T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
    [6] U. Chon, J. S. Shim, and H. M. Jang., J. Appl. Phys. 93, 4769 (2003).
    [7] B. Aurivillius, Ark. Kemi 1, 463 (1949).
    [8] S. E. Cummins and L. E. Cross, J. Appl. Phys., 39, 2268 (1968).
    [9] Y. Shimakawa, Y. Kubo, T. Tauchi, H. Asano, F. Izumi and Z. Hiroi,Appl. Phys. Lett. 79, 2791 (2001).
    [10] S. J. Hyun, B. H. Park, S. D. Bu, J. H. Jung and T. W. Noh, Appl. Phys. Lett. 73, 2518 (1998).
    [11] J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim, S. J. Hyun and T. W. Noh, Appl. Phys. Lett. 74, 2690 (1999).
    [12] C. H. Kim, J. K. Lee, H. S. Suh, J. Y. Yi, K. S. Hong, and T. S. Hahn, Jpn. J. Appl. Phys. 41, 1495 (2002).
    [13] A. D. Li, D. Wu, H. Q. Ling, M. Wang, Z. Liu, and N. Ming, Journal of crystal growth 235, 394 (2002).
    [14] H. Uchida, H. Yoshikawa, I. Okada,H. Matsuda, T. Iijima,T. Watanabe, T. Kojima, and H. Funakubo, Appl. Phys. Lett. 81, 2611 (2002).
    [15] S. K. Kim, M. Miyayama, and H. Yanagida, Mater. Res. Bull. 31, (1996) 121.
    [16] G. Arlt, D. Hennings, and G. Dewith, J. Appl. Phys. 58, 1619 (1985).
    [17] S. B. Desu, C. H. Peng, L. Lammerdiner, and P. J. Schuele, Mater. Res. Soc. Symp. Proc. 200, 319 (1990).

    Chapter 6
    References:
    [1] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, Nature (London) 401, 682 (1999).
    [2] H. N. Lee, D. Hesse, N. Zakharov, S K. Lee, and U. Gösele, Science 296, 2006 (2002).
    [3] T. Sakai, T. Watanabe, H. Funakubo_, K. Saito and M. Osada, Jpn. J. Appl. Phys. 42, 166 (2003).
    [4] T. Watanabe, H. Funakubo, M. Osada,Y. Noguchi and M. Miyayama, Appl. Phys. Lett. 80, 100 (2002).
    [5] T. Kojima, T. Sakai, T. Watanabe, H. Funkubo, K. Saito, M. Osada, Appl. Phys. Lett. 80, 2746 (2002).
    [6] U. Chon, J. S. Shim, and H. M. Jang., J. Appl. Phys. 93, 4769 (2003).

    Chapter 7
    References:
    [1] B. K. Moon, Aoyama, and K. Katon, Appl. Phys. Lett. 74 (1999) 824.
    [2] T. Watanabe, H. Funakubo, K. Satio, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi and M. Miayama, Appl. Phys. Lett. 81 (2002) 1660.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE