研究生: |
何宸志 Chen-Chih Ho |
---|---|
論文名稱: |
微流體系統中壓損變化與表面微結構尺寸關係之研究 Measurement Of Pressure loss in a Micro-Channel With Microstructures on the Sidewall |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 連續流 、壓損 、粗糙度 |
外文關鍵詞: | Continuous flow, Pressure drop, Roughness |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,主要為架設一微流道量測系統,並且使用微機電製程技術,製作出微流道晶片提供測量流道中壓降與雷諾數關係,證實在流道水力直徑縮減至100μm左右時,流場仍然適用古典流體力學理論(對層流、液體而言)分析,即流道壓降與雷諾數呈現正比關係,並且證實系統的準確度。
其次,我們利用PDMS翻模製程,在微流道之中設計各種不同尺寸之微小結構,並且在流道上覆蓋鐵氟龍使表面成為疏水性,企圖使液體與流道壁面之總接觸面積下降,從而改善微流道的流阻,經過測量發現微結構在尺寸間距與流量較小時,具有降低微流道壓降的能力。為此學生提出一個合適的理論模型,説明當結構間距縮減到一定尺寸之後,由於壁面疏水性的影響,以及水的表面張力作用,使流體不會滲入微結構的間隙之中,因此流體和壁面的總接觸面積下降,水力直徑提高,流阻變小。最後,將此理論推廣至其他尺寸的微流道中,發展出一套能夠有效降低微流道流阻之微結構尺寸設計方式。
In this study, we established a micro-channel detection system to detect characteristics of micro-flow. The testing micro-channel chips which were made by Micro-Electro-Mechanical Systems (MEMS) were used to find the relation between pressure drop and Reynolds number. We find that with hydraulic diameter decreasing to 100μm the water flowing in a micro-channel can be analyzed by classical hydrodynamics, meant that Reynolds number and pressure drop are direct proportion.
Then, we used PDMS demolding fabrication to get a micro-channel with microstructures on its sidewall, and got hydrophobic surfaces by coating Teflon, attempted to decrease total liquid-solid contact area in the micro-channel. It results that flow resistant of the micro-channel is decreased. According to our measurement, flow resistant of a micro-channel at low flow rate and low width microstructures on its sidewall decreased clearly. In order to explain this phenomenon, we created a new theory: water won’t leak into gaps of microstructures because of hydrophobic surface and surface tension, resulting that total water-solid contact area decrease and flow resistant of the micro-channel decrease too. Finally, a method which can calculate size of microstructures to satisfy pressure drop decreasing condition with different kinds of micro-channels is proposed.
1. D.B.Tuckermann and R.F.W.Pease, "High performance heat sinking for VLSI." IEEE Electron Device Letters, 1981. 2(5): p. 126-129.
2. S.W.Kang, J.S.Chen, and J.Y.Hung, "Surface roughness of (110) orientation silicon based micro heat exchanger channel." Machine Tools and Manufacture, 1998. 38(5-6): p. 663-668.
3. S.P.Narayanan and G.Venkatarathnam, "Analysis of performance of heat exchangers used in practical micro miniature refrigerators." Cryogenics, 1999. 39(6): p. 517-527.
4. C.W.Liu, C.Gau, and B.T.Dai, "Design and fabrication development of a micro flow heated channel with measurements of the inside micro-scale flow and heat transfer process." Biosensors and Bioelectronics, 2004. 20(1): p. 91-101.
5. R.M.McCormick, et al., "Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates." Analytical Chemistry, 1997. 69(14): p. 2626-2630.
6. M.Streek, et al., "Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation." Biotechnology, 2004. 112(1-2): p. 79-89.
7. R.H.Liu, et al., "Passive mixing in a three-dimensional serpentine microchannel." Microelectromechanical Systems, 2000. 9(2): p. 190-197.
8. P.Gao, S.L.Person, and M.F.Marinet, "Scale effects on hydrodynamics and heat transfer in two-dimensional mini and microchannels." Thermal Sciences, 2002. 41(11): p. 1017-1027.
9. G.M.Mala and D.Li, "Flow characteristics of water in microtubes." Heat and Fluid Flow, 1999. 20(2): p. 142-148.
10. I.Papautsky, et al., "Laminar fluid behavior in microchannels using micropolar fluid theory." Sensors and Actuators A: Physical, 1999. 73(1): p. 101-108.
11. M.Scholle, A.Rund, and N.Aksel, "Drag reduction and improvement of material transport in creeping films." Archive of Applied Mechanics, 2006. 75(2-3): p. 93-112.
12. D.W.Bechert, M.Bruse, and W.Hage, "Experiments with three-dimensional riblets as an idealized model of shark skin." Experiments in Fluids, 2000. 28(5): p. 403-412.
13. T.H.Chen, Y.J.Chuang, and F.G.Tseng. "A Wettability Switchable Surface Driven by Electrostatic Induced Surface Morphology Change Without Energy Interference On Reagents in Droplets." in IEEE Micro Electro Mechanical Systems, 2006 Istanbul. 22-26, Jan., 2006. Istanbul: p.178-181
14. S.Kandlikar, et al., "Heat Transfer and Fluid Flow in Minichannels and Microchannels." 1st ed. 2005, Amsterdam: Elsevier. 450. p.87-136
15. N.A.Patankar, "On the Modeling of Hydrophobic Contact Angles on Rough Surfaces." Langmuir, 2003. 19(4): p. 1249-1253.
16. T.Fujii, "PDMS-based microfluidic devices for biomedical applications." Microelectronic Engineering, 2002. 61-62(1): p. 907-914.
17. C.D.Meinhart, S.T.Wereley, and J.G.Santiago, "PIV measurements of a microchannel flow." Experiments in Fluids, 1999. 27(5): p. 414-419.