研究生: |
楊庚翰 Yang, Keng Han |
---|---|
論文名稱: |
使用三軸加速度感測器之呼吸訊號處理於睡眠呼吸中止症居家照護系統 Respiration Signal Processing with Tri-axial Accelerometer for Homecare System of Sleep Apnea Syndrome |
指導教授: |
黃元豪
Huang, Yuan Hao |
口試委員: |
羅友倫
LO, YU LUN 黃柏鈞 Huang, Po Chun 馬席彬 Ma, Hsi Pin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 睡眠呼吸中止症 、胸部位移訊號 、腹部位移訊號 、呼吸特徵 、三軸加速度感測器 、多項睡眠生理檢測器 |
外文關鍵詞: | Sleep apnea syndrome, Thoracic movement signal, Abdominal movement signal, respiration pattern, tri-axial accelerometer, polysomngraphy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
睡眠呼吸中止症是一種常見的睡眠機能失調和慢性疾病,當人們在睡眠時,會有一次或多次的呼吸中止或淺呼吸,因此當人們在睡眠時,人的呼吸道會暫時性或完全地阻塞住,而每一次呼吸中止稱為一次睡眠呼吸中止症的事件,可持續十秒鐘至數分鐘不等。 人們通常是很難意識到自己罹患睡眠呼吸中止症,需要在醫院的睡眠中心透過整晚睡眠測試的診斷,稱為多項睡眠生理檢測(PSG)。 然而傳統的多項睡眠生理檢查是一種勞力密集、受限環境、不舒適且高成本的檢測。 因此本研究應用三軸加速度感測器,是一種低成本又便利的監測系統,兩組三軸加速度感測器貼附在左側胸腹部上,可被用來感測胸腹呼吸動作的訊號。主成分分析演算法 (PCA) 可被用來將三維的三軸訊號轉換到一維的呼吸訊號, Modified PCA 則可被用來增強轉換的效果,表現比PCA還要好,當與PSG訊號做比對時可看出更加的穩定。 本論文從三軸加速度感測器應用Modified PCA 得到一呼吸訊號,與PSG比對相似性可達到90%,判別事件的準確率則可達到80%,其中CSA和HYP事件仍然較難去辨別,整合其他的生理訊號和特徵來增加偵測事件演算法是必要的。
Sleep apnea syndrome (SAS) is a common sleep disorder and chronic disease in which people's airway becomes partially or completely blocked during sleep
and each pause in breathing is called a sleep apnea event, can last from ten seconds to minutes.
In general, people are difficultly conscious of SAS and have to diagnose with an overnight sleep test, which is called a polysomnography (PSG) in the sleeping center of the hospital.
However, PSG examination is a labor-intensive, limited environment, uncomfortable, and high-cost examination.
Therefore, this study implements tri-axial accelerometer (TAA), which is a low-cost and convenient monitoring system.
The two group of TAA attached to the left side of thorax and abdomen and can be used to capture the thoracic (THO) and abdominal (ABD) movement signals.
The principal component analysis (PCA) algorithm used for transfering the three-dimensional raw data sensing from TAA to one-dimensional respiratory signals.
The proposed modified PCA algorithm (modified PCA) can improve on the effect of the transformation, which is better than PCA algorithm, and signals are more stable when comparing with PSG.
This thesis proposed modified PCA to obtain the respiratory waveform from TAA compared with PSG can reach 90\% similarity and detection result can reach closely 80\% Identification.
The event of CSA and HYP still can not distinguished well and the other physiological signal or feature must be incorporated to enhance the identification.
[1] N. S. F. of USA. How much sleep do we really need? [Online]. Available:
http://sleepfoundation.org/how-sleep-works/how-much-sleep-do-we-really-need,
[2] A. Fekr, K. Radecka, and Z. Zilic, “Design of an e-health respiration and body
posture monitoring system and its application for rib cage and abdomen synchrony
analysis,” in Bioinformatics and Bioengineering (BIBE), 2014 IEEE International
Conference on, Nov 2014, pp. 141–148.
[3] A. Jin, B. Yin, G. Morren, H. Duric, and R. Aarts, “Performance evaluation of
a tri-axial accelerometry-based respiration monitoring for ambient assisted living,”
in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International
Conference of the IEEE, Sept 2009, pp. 5677–5680.
[4] A. Bates, M. Ling, J. Mann, and D. Arvind, “Respiratory rate and flow waveform
estimation from tri-axial accelerometer data,” in Body Sensor Networks (BSN),
2010 International Conference on, June 2010, pp. 144–150.
[5] R. Berry, R. Budhiraja, D. Gottlieb, D. Gozal, C. Iber, V. Kapur, C. Marcus,
R. Mehra, S. Parthasarathy, S. Quan, S. Redline, K. Strohl, S. Ward, and M. Tangredi,
Rules for scoring respiratory events in sleep: update of the 2007 AASM
Manual for the Scoring of Sleep and Associated Events. American Academy of
Sleep Medicine, 2012.
[6] P. Carney, J. Geyer, and R. Berry, Clinical Sleep Disorders. Philadelphia: Lippincott
Williams & Wilkins, 2012.
[7] T. Morgenthaler, V. Kagramanov, V. Hanak, and D. P.A., “Complex sleep apnea
syndrome: is it a unique clinical syndrome?” Sleep, vol. 29, no. 9, pp. 1203–9,
September 2006.
[8] Y.-Y. Lin, “A sleep apnea detection algorithm using thoracic and abdominal movement
signals,” Master’s thesis, Department of Electrical Engineering, National Tsing
Hua University, Hsinchu, Taiwan, June 2015.
[9] A. Khandoker, M. Palaniswami, and C. Karmakar, “Support vector machines for
automated recognition of obstructive sleep apnea syndrome from ecg recordings,”
Information Technology in Biomedicine, IEEE Transactions on, vol. 13, no. 1, pp.
37–48, 2009.
[10] H. Al-Angari and A. Sahakian, “Automated recognition of obstructive sleep apnea
syndrome using support vector machine classifier,” Information Technology in
Biomedicine, IEEE Transactions on, vol. 16, no. 3, pp. 463–468, May 2012.
[11] H.-T.Wu, R. Talmon, and Y.-L. Lo, “Assess sleep stage by modern signal processing
techniques,” IEEE Transactions on Biomedical Engineering, p. in press, 2015.
[12] R. Rifkin and A. Klautau, “In Defense of One-Vs-All Classification,” Journal of
Machine Learning Research, vol. 5, pp. 101–141, 2004.
[13] C.-W.Wang, “A prototype of home-monitoring system for patents with sleepdisordered
breathing,” Master’s thesis, Department of Electrical Engineering, National
Tsing Hua University, Hsinchu, Taiwan, July 2014.
[14] A. Fekr, K. Radecka, and Z. Zilic, “Tidal volume variability and respiration rate
estimation using a wearable accelerometer sensor,” in Wireless Mobile Communication and Healthcare (Mobihealth), 2014 EAI 4th International Conference on, Nov
2014, pp. 1–6.