研究生: |
湯序正 |
---|---|
論文名稱: |
脯胺酸衍生物對於人類 Pin1雙色胺酸功能區的穩定性以及功能性探討 Thermodynamic and Functional Studies of Incorporating 4-Substituted Proline Derivatives into hPin1 WW Domain |
指導教授: | 洪嘉呈 |
口試委員: |
陳貴通
李賢明 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 脯胺酸 、胜肽 |
外文關鍵詞: | WW domain |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用人類 Pin1蛋白質中一個位在N端上稱為 WW domain的胜肽,來當作研究立體電子效應應用在胜肽折疊與和配體結合能力的小蛋白模型。WW Domain具有緊密、三股且反平行的β-sheet結構;而高度保留在各種WW domain 37號胺基酸位置的 proline (P37)在結構上扮演重要的角色,原因在於P37會與某些殘基形成一個疏水核,是用來穩定 WW domain的重要關鍵。原始的 WW Domain中 P37的位相是傾向 Cγ–endo的環構形,我們使用(2S,4R)-4-hydroxy- proline (Hyp), (2S,4R)-4-fluoroproline (Flp), (2S,4R)-4-methoxyproline (Mop), (2S,4S)-4-hydroxyproline (hyp), (2S,4S)-4-fluoroproline (flp), and (2S,4S)-4- methoxyproline (mop)這些非天然的胺基酸衍生物進行取代,探討構形對於結構穩定性和與配體結合力之影響。在變溫實驗和化學變性量測實驗中,我們可以觀察到使用 flp取代的 WW flp37,較原始的 WW domain來得更穩定一些,其他的變異蛋白則較原胜肽不穩定。由此可以看出立體電子效應對於造成不同環構形在結構穩定上並不是主要因素。另外,WW domain可以與含有磷酸的 serine/ threonine-proline胜肽進行結合。我們用等溫滴定卡計 (ITC)測量 WW domain與含磷酸根的配體 VPRpTPVGY之間的結合親合力。在25 °C下,WW flp37的解離常數( Kd)較原始 WW domain來得低,但其他的變異 WW Domain胜肽則有較高的 Kd,顯示 flp可以穩定 WW domain,並且增強其與配體之結合能力。至於其他脯胺酸衍生物則會造成 WW domain結構較為鬆散且不穩定而降低甚至失去與配體之結合能力。
1. Fischer, G., and Aumüller, T. (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes Reviews of Physiology, Biochemistry and Pharmacology 148, 105-150.
2. Golbik, R., Yu, C., Weyher-Stingl, E., Huber, R., Moroder, L., Budisa, N., and Schiene-Fischer, C. (2005) Peptidyl prolyl cis/trans-isomerases: comparative reactivities of cyclophilins, FK506-binding proteins, and parvulins with fluorinated oligopeptide and protein substrates, Biochemistry 44, 16026-16034.
3. Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. (1997) Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent, Cell 89, 875-886.
4. Sudol, M. (1996) Structure and function of the WW domain, Prog Biophys Mol Biol 65, 113-132.
5. Lu, K. P., Hanes, S. D., and Hunter, T. (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis, Nature 380, 544-547.
6. Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998) The essential mitotic peptidyl–prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins, Genes & Development 12, 706-720.
7. Daum, S., Lucke, C., Wildemann, D., and Schiene-Fischer, C. (2007) On the benefit of bivalency in peptide ligand/pin1 interactions, J Mol Biol 374, 147-161.
8. Xu, G. G., Zhang, Y., Mercedes-Camacho, A. Y., and Etzkorn, F. A. (2011) A reduced-amide inhibitor of Pin1 binds in a conformation resembling a twisted-amide transition state, Biochemistry 50, 9545-9550.
9. Lu, P. (1999) Function of WW domains as phosphoserine- or phosphothreonine-binding modules, Science 283, 1325-1328.
10. Wintjens, R., Wieruszeski, J. M., Drobecq, H., Rousselot-Pailley, P., Buee, L., Lippens, G., and Landrieu, I. (2001) 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides, J Biol Chem 276, 25150-25156.
11. Yaffe, M. B., and Elia, A. E. (2001) Phosphoserine/threonine-binding domains, Curr Opin Cell Biol 13, 131-138.
12. Yaffe, M. B., and Smerdon, S. J. (2001) PhosphoSerine/threonine binding domains: you can't pSERious?, Structure 9, R33-38.
13. Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T., and Noel, J. P. (2000) Structural basis for phosphoserine-proline recognition by group IV WW domains, Nat Struct Biol 7, 639-643.
14. Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V., and Lu, K. P. (2001) Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1, EMBO J 20, 3459-3472.
15. Liou, Y. C., Sun, A., Ryo, A., Zhou, X. Z., Yu, Z. X., Huang, H. K., Uchida, T., Bronson, R., Bing, G., Li, X., Hunter, T., and Lu, K. P. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration, Nature 424, 556-561.
16. Yeh, E. S., and Means, A. R. (2007) PIN1, the cell cycle and cancer, Nat Rev Cancer 7, 381-388.
17. Girardini, J. E., Napoli, M., Piazza, S., Rustighi, A., Marotta, C., Radaelli, E., Capaci, V., Jordan, L., Quinlan, P., Thompson, A., Mano, M., Rosato, A., Crook, T., Scanziani, E., Means, A. R., Lozano, G., Schneider, C., and Del Sal, G. (2011) A Pin1/mutant p53 axis promotes aggressiveness in breast cancer, Cancer Cell 20, 79-91.
18. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P., and Lu, K. P. (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein, Nature 399, 784-788.
19. Zhou, X. Z., Kops, O., Werner, A., Lu, P. J., Shen, M., Stoller, G., Kullertz, G., Stark, M., Fischer, G., and Lu, K. P. (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins, Mol Cell 6, 873-883.
20. Smet, C., Sambo, A. V., Wieruszeski, J. M., Leroy, A., Landrieu, I., Buee, L., and Lippens, G. (2004) The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau, Biochemistry 43, 2032-2040.
21. Min, S. H., Cho, J. S., Oh, J. H., Shim, S. B., Hwang, D. Y., Lee, S. H., Jee, S. W., Lim, H. J., Kim, M. Y., Sheen, Y. Y., and Kim, Y. K. (2005) Tau and GSK3beta dephosphorylations are required for regulating Pin1 phosphorylation, Neurochem Res 30, 955-961.
22. Galas, M. C., Dourlen, P., Begard, S., Ando, K., Blum, D., Hamdane, M., and Buee, L. (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease, J Biol Chem 281, 19296-19304.
23. Bulbarelli, A., Lonati, E., Cazzaniga, E., Gregori, M., and Masserini, M. (2009) Pin1 affects Tau phosphorylation in response to Abeta oligomers, Mol Cell Neurosci 42, 75-80.
24. Balastik, M., Lim, J., Pastorino, L., and Lu, K. P. (2007) Pin1 in Alzheimer's disease: multiple substrates, one regulatory mechanism?, Biochim Biophys Acta 1772, 422-429.
25. Zarrinpar, A., and Lim, W. A. (2000) Converging on proline: the mechanism of WW domain peptide recognition, Nat Struct Biol 7, 611-613.
26. Kowalski, J. A., Liu, K., and Kelly, J. W. (2002) NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1, Biopolymers 63, 111-121.
27. Crenshaw, D. G., Yang, J., Means, A. R., and Kornbluth, S. (1998) The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1, EMBO J 17, 1315-1327.
28. Koepf, E. K., Petrassi, H. M., Ratnaswamy, G., Huff, M. E., Sudol, M., and Kelly, J. W. (1999) Characterization of the structure and function of W → F WW domain variants: identification of a natively unfolded protein that folds upon ligand binding, Biochemistry 38, 14338-14351.
29. Jager, M., Dendle, M., and Kelly, J. W. (2009) Sequence determinants of thermodynamic stability in a WW domain--an all-beta-sheet protein, Protein Sci 18, 1806-1813.
30. Jager, M., Nguyen, H., Crane, J. C., Kelly, J. W., and Gruebele, M. (2001) The folding mechanism of a beta-sheet: the WW domain, J Mol Biol 311, 373-393.
31. Price, J. L., Shental-Bechor, D., Dhar, A., Turner, M. J., Powers, E. T., Gruebele, M., Levy, Y., and Kelly, J. W. (2010) Context-dependent effects of asparagine glycosylation on Pin WW folding kinetics and thermodynamics, J Am Chem Soc 132, 15359-15367.
32. Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Ferraris, G., Gilli, G. Zanotti, G., Monaco, G., Catti, M. (2002) Fundamentals of Crystallography, Oxford University Press.
33. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure, Protein Sci 12, 1188-1194.
34. Benzi, C., Improta, R., Scalmani, G., and Barone, V. (2002) Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution, J Comput Chem 23, 341-350.
35. Wolfe, S. (1972) Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds, Acc Chem Res 5, 102-111.
36. Improta, R., Benzi, C., and Barone, V. (2001) Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution, J Am Chem Soc 123, 12568-12577.
37. Taylor, C. M., Hardre, R., and Edwards, P. J. (2005) The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides, The Journal of organic chemistry 70, 1306-1315.
38. Naduthambi, D., and Zondlo, N. J. (2006) Stereoelectronic tuning of the structure and stability of the trp cage miniprotein, J Am Chem Soc 128, 12430-12431.
39. Zheng, T. Y., Lin, Y. J., and Horng, J. C. (2010) Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein, Biochemistry 49, 4255-4263.
40. Merrifield, R. B. (2006) Solid-Phase Peptide Synthesis, pp 221-296, John Wiley & Sons, Inc.
41. 張湘戎. (2003) 體抑素胜太分子內雙硫鍵建構之研究, 中原大學化學研究所碩士學位論文.
42. Chan, W. C., White, P. D. (2004) Fmoc solid phase peptide synthesis., Oxford University press, New York.
43. Berova, N., Nakanishi, K., Woody, R. (2000) Circular Dichroism: Principles and Applications., Wiley.
44. Skoog, D. A., Holler, F. J., Nieman, T. A. (1998) Principles of instrumental analysis., 5 ed., Saunders College Press, Belmont.
45. Freire, E., Mayorga, O. L., and Straume, M. (1990) Isothermal titration calorimetry, Anal Chem 62, 950A-959A.
46. Egawa, T., Tsuneshige, A., Suematsu, M., and Yonetani, T. (2007) Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters, Anal Chem 79, 2972-2978.
47. Jin, L., Wei, W., Jiang, Y., Peng, H., Cai, J., Mao, C., Dai, H., Choy, W., Bemis, J. E., Jirousek, M. R., Milne, J. C., Westphal, C. H., and Perni, R. B. (2009) Crystal structures of human SIRT3 displaying substrate-induced conformational changes, J Biol Chem 284, 24394-24405.
48. Park, S., Radmer, R. J., Klein, T. E., and Pande, V. S. (2005) A new set of molecular mechanics parameters for hydroxyproline and its use in molecular dynamics simulations of collagen-like peptides, J Comput Chem 26, 1612-1616.
49. Horng, J.-C., and Raines, R. T. (2006) Stereoelectronic effects on polyproline conformation, Protein Sci. 15, 74-83.
50. Chiang, Y.-C., Lin, Y.-J., and Horng, J.-C. (2009) Stereoelectronic effects on the transition barrier of polyproline conformational interconversion, Protein Sci 18, 1967-1977.
51. Kaul, R., Angeles, A. R., Jager, M., Powers, E. T., and Kelly, J. W. (2001) Incorporating beta-turns and a turn mimetic out of context in loop 1 of the WW domain affords cooperatively folded beta-sheets, J Am Chem Soc 123, 5206-5212.
52. Jager, M., Dendle, M., Fuller, A. A., and Kelly, J. W. (2007) A cross-strand Trp-Trp pair stabilizes the hPin1 WW domain at the expense of function, Protein Sci 16, 2306-2313.
53. Wüthrich, K. (1986) NMR of proteins and nucleic acids, Wiley-VCH.