簡易檢索 / 詳目顯示

研究生: 蔡東哲
Tsai, Tung-Che
論文名稱: 開發非水溶劑與胺基酸鹽混搭醇胺類之配方
Development of Mixed Non-aqueous Alkanolamine with Amino Acid Salt
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 王竹方
陳郁文
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 二氧化碳捕獲胺基酸鹽醇胺非水溶劑
外文關鍵詞: co2 capture, amino acid salt, alkanolamine, non-aqueous solvent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非水溶劑二甘醇(Diethylene Glycol, DEG)與水溶劑相比,具有更低的比熱及蒸氣壓,因此添加DEG取代部分的水溶劑,可以達到降低再生能耗的目的。此外二次乙亞胺(Piperazine, PZ)於水中的溶解度也可以因為DEG的添加而往上提升,並同時達到提升捕獲量及降低再生能耗的目的。
    將DEG添加於吸收劑PZ及乙二胺基乙磺酸鈉(2-[(2-Aminoethyl)amino]ethanesulfonate, NaADS)中,使PZ/NaADS/DEG(25/15/10 wt%)的析出溫度與相同PZ濃度的水溶液相比能下降19 oC。在循環操作實驗中, PZ/NaADS/DEG(25/15/10 wt%)與PZ/NaADS(15/25 wt%)相比,雖然捕獲量下降了3.4%,但再生能耗可以下降26.4%,並且達到再生能耗小於2.0 GJ/ton CO2的目標。並發現隨著DEG含量的增加,雖然可以再提升PZ的濃度,但同時也會使配方在循環操作中黏度提升,反而造成捕獲量的下降。考量到PZ於RPB中比NaADS有更高的捕獲效率,因此降低NaADS含量並改變不同PZ濃度進行測試,其中PZ/NaADS/DEG(30/5/10 wt%)與PZ/NaADS(15/25 wt%)相比,不僅捕獲量增加5.3%,再生能耗可以再下降27.7%。
    改變循環操作中氣液比,使配方PZ/NaADS/DEG(30/5/10 wt%)的捕獲效率可以分別達到90%、80%、70%及60%,但從實驗結果可以發現,隨著捕獲效率的提升,捕獲量反而遞減,並以捕獲效率為60%時有最高捕獲量,也證實在 CO2捕獲的研究中,更應著重於實質的捕獲量,而非捕獲效率。
    PZ/NaADS/DEG(30/5/10 wt%)與PZ/DEG(30/10 wt%)+1.5m KCl相比,雖然兩者的飽和溶氧量差別不大,但由於KCl無法吸收CO2,因此PZ/NaADS/DEG(30/5/10 wt%)在循環操作中有較高的捕獲量。將DEG更換成黏度較低的非水溶劑乙二醇(Ethylene Glycol, EG),可以使配方在循環操作中黏度下降約1.0 cp,而使其捕獲量能從6.57 g/min上升至6.72 g/min。


    Compared with the aqueous solvents, non-aqueous solvent diethylene glycol(DEG) possesses lower specific heat and vapor pressure. Due to these properties, the regeneration energy can be reduced by adding DEG to replace part of aqueous solution. Besides, the solubility of piperazine(PZ) in solution can be enhanced by the addition of DEG; as a result, the purposes of increasing the CO2 capture amount and reducing the regeneration energy can be reached meanwhile.
    DEG was added into PZ and 2-[(2-Aminoethyl)amino]ethanesulfonate(NaADS). The precipitation temperature of PZ/NaADS/DEG(25/15/10 wt%) was decreased by 19 oC to the aqueous solution with the same concentration of PZ. Compared with PZ/NaADS(15/25 wt%), although the capture amount of PZ/NaADS/DEG(25/15/10 wt%) was decreased by 3.4%, the regeneration energy could be reduced by 26.4% in a continuous operation, which achieves the goal of the regeneration energy below 2.0 GJ/ton CO2. Though concentration of PZ could be enhanced by increasing the content of DEG, the viscosity of the formulation would also be increased during the operation, leading to a decrease in capture amount. Considering the higher capture efficiency of PZ than NaADS in RPB, the concentration of NaADS was decreased to allow more PZ dissolved. According to the result, PZ/NaADS/DEG(30/5/10 wt%) could not only increase the capture amount by 5.3% but also reduce the regeneration energy by 27.7% to PZ/NaADS(15/25 wt%).
    PZ/NaADS/DEG(30/5/10 wt%) could reach the capture efficiency of 90%, 80%, 70% and 60% by changing the operation conditions of gas and liquid flow rates. However, it was found that the capture amount decreased with increasing capture efficiency and PZ/NaADS/DEG(30/5/10 wt%) possessed the highest capture amount at the capture efficiency of 60%. This result showed that the actual capture amount of CO2 was more important than the capture efficiency for the purpose of CO2 capture.
    Compared with PZ/DEG(30/10 wt%)+1.5m KCl, PZ/NaADS/DEG(30/5/10 wt%) with almost the same dissolved oxygen showed more CO2 capture amount in a continuous operation because KCl could not react with CO2. Replacing DEG with Ethylene Glycol (EG), the viscosity of formulation could be decreased by 1.0 cp in a continuous operation, resulting in an increasing of the capture amount from 6.57 g/min to 6.72 g/min.

    謝誌 1 摘要 2 Abstract 3 目錄 5 圖目錄 7 表目錄 8 第一章 緒論 10 1-1. 前言 10 1-2. CO2捕獲技術 13 1-3. CO2分離技術 13 1-4. 化學吸收法 15 1-5. 化學吸收法吸收劑 16 1.5-1. 醇胺類吸收劑 16 1-5-2. 胺基酸鹽吸收劑 20 1-5-3. 碳酸鉀吸收劑 21 1-6. 非水溶劑 22 1-7. 超重力旋轉床 22 第二章 文獻回顧與研究動機 25 2-1. 文獻回顧 25 2-2. 研究動機 29 第三章 實驗方法 31 3-1. 實驗裝置及實驗步驟 31 3-1-1. 批次CO2吸收實驗 31 3-1-2. 批次CO2再生實驗 32 3-1-3. 吸收劑溶氧量量測 33 3-1-4. 超重力旋轉床CO2捕獲實驗 34 3-1-5. 超重力旋轉床CO2再生實驗 36 3-1-6. 超重力旋轉床吸收串聯及超重力旋轉床再生系統連接 38 3-2. 實驗儀器 39 3-3. 實驗藥品及氣體 40 3-4. 儀器校正 40 3-5. 數據處理 42 3-5-1. CO2吸收數據處理 42 3-5-2. CO2再生數據處理 43 第四章 實驗結果 44 4-1. 添加非水溶劑於吸收劑配方中及性質量測 44 4-2. 添加非水溶劑配方於批次吸收及再生實驗 47 4-3. 添加非水溶劑配方於RPB吸收實驗 50 4-4. RPB吸收及再生連續式操作實驗 52 4-4-1. 實驗室吸收劑配方於RPB連續式操作實驗 56 4-4-2. 添加非水溶劑配方於RPB連續式操作實驗 59 4-4-3. 提升DEG含量之配方於RPB連續式操作實驗 63 4-4-4. 改變吸收劑比例之配方於RPB連續式操作實驗 67 4-4-5. 不同操作氣液比於RPB連續式操作實驗 72 4-4-6. 不同非水溶劑及氧氣抑制劑之配方於RPB連續式操作實驗 76 第五章 結論 80 第六章 參考文獻 82

    [1] N. National Oceanic & Atmospheric Administration. (2018, Jul. 1). Recent Monthly Average Mauna Loa CO2 [Online]. Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
    [2] U. NATIONS, "Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009 ", Copenhagen,Mar. 20, 2010.
    [3] U. NATIONS. (2018, Jul. 1). The Paris Agreement [Online]. Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
    [4] 行政院環境保護署. (2018, Jul. 1). 溫室氣體減量及管理法 [Online]. Available: http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0020098
    [5] M. Van der Hoeven and D. Houssin, "Energy technology perspectives 2015: mobilising innovation to accelerate climate action," in Energy technology perspectives 2015, Paris, 2015.
    [6] G. C. Institute. (2018, Jul. 1). Large-scale CCS facilities [Online]. Available: http://www.globalccsinstitute.com/projects/large-scale-ccs-projects
    [7] 第二期國家能源型計畫. (2018, Jul. 1). 國內碳捕獲示範工廠規模 [Online]. Available: http://www.nepii.tw/language/zh/home/
    [8] 楊蕎瑋,黃至弘,談駿嵩, "CCSU技術之現況與展望," 汽電共生報導, vol. 77期, pp. 25-41, Dec. 2013.
    [9] S. H. Moon and J. W. Shim, "A novel process for CO2/CH4 gas separation on activated carbon fibers - electric swing adsorption," Journal of Colloid and Interface Science, vol. 298, pp. 523-528, Jun. 2006.
    [10] A. Hart and N. Gnanendran, "Cryogenic CO2 capture in natural gas," Energy Procedia, vol. 1, pp. 697-706, Feb. 2009.
    [11] G. T. Rochelle, "Amine Scrubbing for CO2 Capture," Science, vol. 325, pp. 1652-1654, Sep. 2009.
    [12] R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas, et al., "Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the Boundary Dam CO2 capture demonstration," Industrial & Engineering Chemistry Research, vol. 45, pp. 2414-2420, Apr. 2006.
    [13] A. Aroonwilas, A. Veawab, and P. Tontiwachwuthikul, "Behavior of the mass-transfer coefficient of structured packings in CO2 absorbers with chemical reactions," Industrial & Engineering Chemistry Research, vol. 38, pp. 2044-2050, May. 1999.
    [14] J. Xiao, C. W. Li, and M. H. Li, "Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol plus monoethanolamine," Chemical Engineering Science, vol. 55, pp. 161-175, Jan. 2000.
    [15] C. H. Liao and M. H. Li, "Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine plus N-methyldiethanolamine," Chemical Engineering Science, vol. 57, pp. 4569-4582, Nov. 2002.
    [16] M. Caplow, "Kinetics of carbamate formation and breakdown," Journal of the American Chemical Society, vol. 90, pp. 6795-6803, May. 1968.
    [17] P. Danckwerts, "The reaction of CO2 with ethanolamines," Chemical Engineering Science, vol. 34, pp. 443-446, Oct. 1979.
    [18] E. B. Rinker, S. S. Ashour, and O. C. Sandall, "Kinetics and Modeling of Carbon-Dioxide Absorption into Aqueous-Solutions of N-Methyldiethanolamine," Chemical Engineering Science, vol. 50, pp. 755-768, Mar. 1995.
    [19] S. Xu, Y. W. Wang, F. D. Otto, and A. E. Mather, "Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions," Chemical Engineering Science, vol. 51, pp. 841-850, Mar. 1996.
    [20] S. A. Freeman, R. Dugas, D. H. Van Wagener, T. Nguyen, and G. T. Rochelle, "Carbon dioxide capture with concentrated, aqueous piperazine," International Journal of Greenhouse Gas Control, vol. 4, pp. 119-124, Mar. 2010.
    [21] J. T. Cullinane, "Thermodynamics and kinetics of aqueous piperazine with potassium carbonate for carbon dioxide absorption," Ph.D. dissertation, Dept. CH. Eng., Texas Univ., Austin, 2005.
    [22] A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, "Post-Combustion CO2 Capture Using Solid Sorbents: A Review," Industrial & Engineering Chemistry Research, vol. 51, pp. 1438-1463, Feb. 2012.
    [23] S. P. Yan, M. X. Fang, W. F. Zhang, S. Y. Wang, Z. K. Xu, Z. Y. Luo, et al., "Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting," Fuel Processing Technology, vol. 88, pp. 501-511, May. 2007.
    [24] J. van Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, "Physiochemical properties of several aqueous potassium amino acid salts," Journal of Chemical and Engineering Data, vol. 53, pp. 1286-1291, Jun. 2008.
    [25] E. Sanchez-Fernandez, F. D. Mercader, K. Misiak, L. van der Ham, M. Linders, and E. Goetheer, "New process concepts for CO2 capture based on precipitating amino acids," Energy Procedia, vol. 37, pp. 1160-1171, Aug. 2013.
    [26] M. E. Majchrowicz, "Amino acid salt solutions for carbon dioxide capture," Ph.D. dissertation, Dept. CH. Eng., Twente Univ., Enschede, Netherlands, 2014.
    [27] P. Kumar, J. Hogendoorn, P. Feron, and G. Versteeg, "Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 1. Crystallization in carbon dioxide loaded aqueous salt solutions of amino acids," Industrial & engineering chemistry research, vol. 42, pp. 2832-2840, May. 2003.
    [28] P. Kumar, J. Hogendoorn, S. Timmer, P. Feron, and G. Versteeg, "Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 2. Experimental VLE data and model," Industrial & engineering chemistry research, vol. 42, pp. 2841-2852, May. 2003.
    [29] S. Yan, Q. He, S. Zhao, Y. Wang, and P. Ai, "Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas–liquid membrane contactor," Chemical Engineering and Processing: Process Intensification, vol. 85, pp. 125-135, Nov. 2014.
    [30] S. Yan, Q. He, S. Zhao, H. Zhai, M. Cao, and P. Ai, "CO2 removal from biogas by using green amino acid salts: Performance evaluation," Fuel processing technology, vol. 129, pp. 203-212, Jan. 2015.
    [31] U. E. Aronu, H. F. Svendsen, and K. A. Hoff, "Investigation of amine amino acid salts for carbon dioxide absorption," International Journal of Greenhouse Gas Control, vol. 4, pp. 771-775, Sep. 2010.
    [32] D. A. Kuettel, B. Fischer, S. Hohe, R. Joh, M. Kinzl, and R. Schneider, "Removal of Acidic Gases and Metal Ion Contaminants with PostCap (TM) Technology," Energy Procedia, vol. 37, pp. 1687-1695, 2013.
    [33] C. Ramshaw and R. H. Mallinson, "Mass transfer process," U.S. Patent 4 283 255, Aug. 11, 1981.
    [34] M. S. Jassim, G. Rochelle, D. Eimer, and C. Ramshaw, "Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed," Industrial & engineering chemistry research, vol. 46, pp. 2823-2833, Apr. 2007.
    [35] C. C. Lin, W. T. Liu, and C. S. Tan, "Removal of carbon dioxide by absorption in a rotating packed bed," Industrial & Engineering Chemistry Research, vol. 42, pp. 2381-2386, May. 2003.
    [36] H.-H. Cheng and C.-S. Tan, "Reduction of CO2 concentration in a zinc/air battery by absorption in a rotating packed bed," Journal of power sources, vol. 162, pp. 1431-1436, Nov. 2006.
    [37] C.-C. Lin and W.-T. Liu, "Removal of an Undesired Component froma Valuable Product Using a Rotating Packed Bed," Journal of Industrial and Engineering Chemistry, vol. 12, pp. 455-459, May. 2006.
    [38] M. Keyvani and N. C. Gardner, "Operating characteristics of rotating beds," Case Western Reserve Univ., Cleveland, OH (United States), DOE/PC/79924-T3, Dec. 31, 1988.
    [39] C.-C. Lin and W.-T. Liu, "Mass transfer characteristics of a high-voidage rotating packed bed," Journal of Industrial and Engineering Chemistry, vol. 13, pp. 71-78, Oct. 2007.
    [40] R. Fowler, K. Gerdes, and H. Nygaard, "A Commercial-Scale Demonstration of Higee for Bulk CO Removal and Gas Dehydration," in Offshore Technology Conference, Houston, Texas, 1989.
    [41] P. Singh, W. P. M. van Swaaij, and D. W. Brilman, "Kinetics study of carbon dioxide absorption in aqueous solutions of 1, 6-hexamethyldiamine (HMDA) and 1, 6-hexamethyldiamine, N, N′ di-methyl (HMDA, N, N′)," Chemical engineering science, vol. 66, pp. 4521-4532, Oct. 2011.
    [42] J.-F. Chen, Y.-H. Wang, F. Guo, X.-M. Wang, and C. Zheng, "Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation," Industrial & engineering chemistry research, vol. 39, pp. 948-954, Mar. 2000.
    [43] M. Wang, H. Zou, L. Shao, and J. Chen, "Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment," Powder technology, vol. 142, pp. 166-174, Apr. 2004.
    [44] C.-C. Lin, T.-J. Ho, and W.-T. Liu, "Distillation in a rotating packed bed," Journal of chemical engineering of Japan, vol. 35, pp. 1298-1304, 2002.
    [45] J. Nascimento, T. Ravagnani, and J. Pereira, "Experimental study of a rotating packed bed distillation column," Brazilian journal of chemical engineering, vol. 26, pp. 219-226, Mar. 2009.
    [46] Y. Ku, Y.-S. Ji, and H.-W. Chen, "Ozonation of o-cresol in aqueous solutions using a rotating packed-bed reactor," Water Environment Research, vol. 80, pp. 41-46, Jan. 2008.
    [47] C. C. Lin and W. T. Liu, "Ozone oxidation in a rotating packed bed," Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 78, pp. 138-141, Feb. 2003.
    [48] G. Q. Wang, O. G. Xu, Z. C. Xu, and J. B. Ji, "New HIGEE-Rotating Zigzag Bed and Its Mass Transfer Performance," Industrial & Engineering Chemistry Research, vol. 47, pp. 8840-8846, Nov. 2008.
    [49] A. A. Olajire, "CO2 capture and separation technologies for end-of-pipe applications - A review," Energy, vol. 35, pp. 2610-2628, Jun. 2010.
    [50] G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, and A. Voice, "Aqueous piperazine as the new standard for CO2 capture technology," Chemical Engineering Journal, vol. 171, pp. 725-733, Jul. 2011.
    [51] L. Dumée, C. Scholes, G. Stevens, and S. Kentish, "Purification of aqueous amine solvents used in post combustion CO2 capture: A review," International Journal of Greenhouse Gas Control, vol. 10, pp. 443-455, Sep. 2012.
    [52] Y. Du, Y. K. Wang, and G. T. Rochelle, "Thermal degradation of novel piperazine-based amine blends for CO2 capture," International Journal of Greenhouse Gas Control, vol. 49, pp. 239-249, Jun. 2016.
    [53] E. Chen, Y. Zhang, Y. J. Lin, P. Nielsenb, and G. Rochelle, "Review of Recent Pilot Plant Activities with Concentrated Piperazine," Energy Procedia, vol. 114, pp. 1110-1127, Jul. 2017.
    [54] L. Cuccia, J. Dugay, D. Bontemps, M. Louis-Louisy, T. Morand, V. Bellosta, et al., "An original strategy for the analysis of degradation products in CO2 capture emissions: monitoring of an innovative blend 1-methylpiperazine/piperazine/water in pilot conditions," Energy Procedia, vol. 114, pp. 1729-1736, Jul. 2017.
    [55] Y. Du, L. Li, O. Namjoshi, A. K. Voice, N. A. Fine, and G. T. Rochelle, "Aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture," Energy Procedia, vol. 37, pp. 1621-1638, Dec. 2013.
    [56] Y. Du and G. T. Rochelle, "Thermodynamic modeling of aqueous piperazine/N-(2-aminoethyl) piperazine for CO2 capture," Energy Procedia, vol. 63, pp. 997-1017, 2014.
    [57] Y. Du, Y. K. Wang, and G. T. Rochelle, "Thermal Degradation of Piperazine/4-Hydroxy-1-methylpiperidine for CO2 Capture," Industrial & Engineering Chemistry Research, vol. 55, pp. 10004-10010, Sep. 2016.
    [58] Y. Du, Y. K. Wang, and G. T. Rochelle, "Piperazine/4-hydroxy-1-methylpiperidine for CO2 capture," Chemical Engineering Journal, vol. 307, pp. 258-263, Jan. 2017.
    [59] D. Klingler, J. Berg, and H. Vogel, "Hydrothermal reactions of alanine and glycine in sub- and supercritical water," The Journal of Supercritical Fluids, vol. 43, pp. 112-119, Nov. 2007.
    [60] R. J. Hook, "An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds," Industrial & Engineering Chemistry Research, vol. 36, pp. 1779-1790, May. 1997.
    [61] K. Simons, K. Nijmeijer, H. Mengers, W. Brilman, and M. Wessling, "Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas–liquid membrane contactors," ChemSusChem, vol. 3, pp. 939-947, Jul. 2010.
    [62] S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, and K. R. Jang, "Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2," Korean Journal of Chemical Engineering, vol. 27, pp. 1576-1580, Sep. 2010.
    [63] Q. Z. Huang, S. Bhatnagar, J. E. Remias, J. P. Selegue, and K. L. Liu, "Thermal degradation of amino acid salts in CO2 capture," International Journal of Greenhouse Gas Control, vol. 19, pp. 243-250, Nov. 2013.
    [64] B. Lv, Y. Xia, Y. Shi, N. Liu, W. Li, and S. Li, "A novel hydrophilic amino acid ionic liquid [C2OHmim][Gly] as aqueous sorbent for CO2 capture," International Journal of Greenhouse Gas Control, vol. 46, pp. 1-6, Mar. 2016.
    [65] B. H. Lv, G. H. Jing, Y. H. Qian, and Z. M. Zhou, "An efficient absorbent of amine-based amino acid-functionalized ionic liquids for CO2 capture: High capacity and regeneration ability," Chemical Engineering Journal, vol. 289, pp. 212-218, Apr. 2016.
    [66] H. H. Cheng and C. S. Tan, "Carbon dioxide capture by blended alkanolamines in rotating packed bed," Energy Procedia, vol. 1, pp. 925-932, Feb. 2009.
    [67] H. H. Cheng, J. F. Shen, and C. S. Tan, "CO2 capture from hot stove gas in steel making process," International Journal of Greenhouse Gas Control, vol. 4, pp. 525-531, May. 2010.
    [68] C. H. Yu, H. H. Cheng, and C. S. Tan, "CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed," International Journal of Greenhouse Gas Control, vol. 9, pp. 136-147, Jul. 2012.
    [69] H. H. Cheng, C. C. Lai, and C. S. Tan, "Thermal regeneration of alkanolamine solutions in a rotating packed bed," International Journal of Greenhouse Gas Control, vol. 16, pp. 206-216, Aug. 2013.
    [70] C.-H. Yu, Y.-X. Lin, and C.-S. Tan, "Effects of inorganic salts on absorption of CO2 and O2 for absorbents containing diethylenetriamine and piperazine," International Journal of Greenhouse Gas Control, vol. 30, pp. 118-124, Nov. 2014.
    [71] C. H. Yu and C. S. Tan, "CO2 Capture by Aqueous Solution Containing Mixed Alkanolamines and Diethylene Glycol in a Rotating Packed Bed," Energy Procedia, vol. 63, pp. 758-764, 2014.
    [72] C.-H. Yu, M.-T. Chen, H. Chen, and C.-S. Tan, "Effects of process configurations for combination of rotating packed bed and packed bed on CO2 capture," Applied Energy, vol. 175, pp. 269-276, Aug. 2016.
    [73] 蕭暐翰, "以胺基酸鹽混搭醇胺類配方開發長時間操作之二氧化碳吸收劑," 國立清華大學化學工程研究所碩士論文, 2017.
    [74] F. A. Tobiesen and H. F. Svendsen, "Study of a Modified Amine-Based Regeneration Unit," Industrial & Engineering Chemistry Research, vol. 45, pp. 2489-2496, Apr. 2006.
    [75] A. Kothandaraman, L. Nord, O. Bolland, H. J. Herzog, and G. J. McRae, "Comparison of solvents for post-combustion capture of CO2 by chemical absorption," Energy Procedia, vol. 1, pp. 1373-1380, Feb. 2009.

    QR CODE