簡易檢索 / 詳目顯示

研究生: 周桂勗
Chou, Kuei-Hsu
論文名稱: 表面電漿磁光柯爾增強效應用於生物感測晶片
Strong Transverse Magneto-optical Kerr Effect on Surface Plasmonic Grating for Sensitive and Label-free Sensing
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 賴志煌
Lai, Chih-Huang
李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 78
中文關鍵詞: 磁光柯爾效應表面電漿感測器
外文關鍵詞: Magneto-optical Kerr Effect, Surface Plasmon, Sensor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們主要研究橫向磁光柯爾效應(TMOKE)在光柵式
    Au/Fe/Au 結構的表面電漿增強效應用在非標定、高敏感度的光學生
    物量測。藉由材料選擇與結構優化來達到最佳化磁光訊號,之後整合
    微流道封裝成面積25´14mm2的元件來做流體量測。我們分析了元件的
    磁光特性與生物量測的能力。所量測到的最大磁光訊號約為0.035 並
    能觀察到磁光訊號在表面電漿共振波長附近具有相當大的色散特性。
    接著透過整合好的磁光感測晶片來量測不同濃度的食鹽水,所量測的
    本質解析度與食鹽水(bulk solution)解析度分別約為 10-7 RIU
    ∼、0.004%(wt)。此外,我們利用高親和力的avidin/bBSA 生物組合動態
    (real time)量測avidin 與biotin 之間的交互作用,並驗證表面電漿磁光
    訊號具有線性量測與定量分析的特性。量測avidin 的解析度約為
    1.5nM。最後,我們所設計的感測晶片可由奈米技術生產並整合微流
    道成晶片實驗室(lab-on-chip)作為生物感測器。


    In this thesis, a novel transverse magneto-optical Kerr effect (TMOKE) on the
    composite surface plasmon grating is proposed and developed to implement a
    label-free, high-sensitive optical biosensor. The Au/Fe/Au grating structure is
    designed and optimized to achieve maximal Kerr parameter. The device area is 25x14
    mm2 and is integrated with a single microfludic channel for delivering liquid for test.
    After fabricating the device, we characterize the magneto-optical effect of the
    Au/Fe/Au plasmon grating and capabilities of detecting bio-molecules. The measured
    maximum of Kerr parameter is about 0.035 and a very dispersive near the SPP
    wavelength. Through this integrated magneto-optics device, we have demonstrated
    detection of NaCl in salt solution in low concentrations. The calculated detection of
    limit is around 10-7 RIU , corresponding to a minimal concentration of 0.004% (wt).
    Moreover, we investigate avidin/bBSA binding and show a result of real-time
    monitoring of avidin and bBSA interaction. The minimum detectable concentration of
    avidin is measured to be around 1.5nM. Our device could be fabricated by a
    nanoimprinting technique for mass production and integrated with microfludic
    channels for implementing a lab-on-chip system to detect bio-molecules.

    第一章 緒論 ........................................................................................... 1 1.1 前言.................................................................................................................. 1 1.2 研究動機.......................................................................................................... 2 1.3 文章架構.......................................................................................................... 4 第二章 理論背景 ................................................................................... 5 2.1 表面電漿原理(Surface Plasmon) .................................................................... 5 2.2 磁光效應原理.................................................................................................. 6 2.3 磁光柯爾效應.................................................................................................. 8 2.4 表面電漿在金屬平面模態............................................................................ 10 2.5 激發表面電漿波............................................................................................ 13 2.6 稜鏡耦合(prism coupling) ............................................................................. 14 2.7 表面電漿磁光效應........................................................................................ 16 2.8 周期性結構表面電漿磁光效應.................................................................... 17 2.9 生物感測器之應用........................................................................................ 20 第三章 實驗模擬與元件設計 ............................................................. 22 3.1 等向性色散曲線............................................................................................ 22 3.2 非等向性色散曲線........................................................................................ 24 3.3 耦合波理論(RCWA) ..................................................................................... 26 3.4 元件最佳化設計............................................................................................ 30 第四章 量測系統與元件製作 ............................................................. 35 4.1 元件製作流程圖............................................................................................ 35 4.2 元件製作流程說明........................................................................................ 37 4.3 微流道製作.................................................................................................... 42 4.4 表面電漿量測系統........................................................................................ 44 4.5 功率放大器與電磁鐵製作............................................................................ 45 第五章 實驗量測與分析 ..................................................................... 46 5.1 磁光訊號量測................................................................................................ 46 5.2 光學系統本質的偵測極限............................................................................ 47 5.3 元件的磁光特性與液體的影響.................................................................... 49 5.4 食鹽水的量測與解析度估計........................................................................ 50 5.5 生物檢體組.................................................................................................... 53 5.6 生物檢體量測方法........................................................................................ 55 5.7 動態生物檢測................................................................................................ 57 5.8 動態生物線性量測........................................................................................ 58 5.9 表面形貌對生物分子位置的影響................................................................ 60 5.10 溫度、電路與玻璃反射光對量測系統的影響.......................................... 61 第六章 結論與改善 ............................................................................. 63 6.1 結論................................................................................................................ 63 6.2 改善................................................................................................................ 63 Appendix A ............................................................................................... 64 Appendix B ............................................................................................... 66 Appendix C ............................................................................................... 67 參考資料 ................................................................................................... 75

    1. Wood, R.W., On a remarkable case of uneven distribution of light in a
    diffraction grating spectrum. Philosophical Magazine, 1902. 4(19-24): p.
    396-402.
    2. Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary
    waves on metallic surfaces (Sommerfeld's waves). Journal of the Optical
    Society of America, 1941. 31(3): p. 213-222.
    3. Ritchie, R.H., PLASMA LOSSES BY FAST ELECTRONS IN THIN FILMS. Physical
    Review, 1957. 106(5): p. 874-881.
    4. Stern, E.A. and R.A. Ferrell, SURFACE PLASMA OSCILLATIONS OF A
    DEGENERATE ELECTRON GAS. Physical Review, 1960. 120(1): p. 130-136.
    5. Otto, A., Excitation of nonradiative surface plasma waves in silver by the
    method of frustrated total reflection. Zeitschrift für Physik, 1968. 216: p.
    398-411.
    6. Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics,
    1985. 57(3): p. 783-826.
    7. Wolfbeis, O.S., Optical Sensor. Springer, 2004.
    8. Moerner, W.E., New directions in single-molecule imaging and analysis. Proc.
    Natl. Acad. Sci., 2007: p. 12596.
    9. Cox, W.G. and V.L. Singer, Fluorescent DNA hybridization probe preparation
    using amine modification and reactive dye coupling. Biotechniques, 2004.
    36(1): p. 114-+.
    10. Homola, J., Present and future of surface plasmon resonance biosensors.
    Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
    11. Hoa, X.D., A.G. Kirk, and M. Tabrizian, Towards integrated and sensitive
    surface plasmon resonance biosensors: A review of recent progress.
    Biosensors & Bioelectronics, 2007. 23(2): p. 151-160.
    12. Ymeti, A., et al., Realization of a multichannel integrated Young interferometer
    chemical sensor. Applied Optics, 2003. 42(28): p. 5649-5660.
    13. Schneider, B.H., J.G. Edwards, and N.F. Hartman, Hartman interferometer:
    versatile integrated optic sensor for label-free, real-time quantification of
    nucleic acids, proteins, and pathogens. Clinical Chemistry, 1997. 43(9): p.
    1757-1763.
    14. Teraoka, I., S. Arnold, and F. Vollmer, Perturbation approach to resonance
    shifts of whispering-gallery modes in a dielectric microsphere as a probe of a
    76
    surrounding medium. Journal of the Optical Society of America B-Optical
    Physics, 2003. 20(9): p. 1937-1946.
    15. Noto, M., et al., Molecular weight dependence of a whispering gallery mode
    biosensor. Applied Physics Letters, 2005. 87(22).
    16. Ksendzov, A. and Y. Lin, Integrated optics ring-resonator sensors for protein
    detection. Optics Letters, 2005. 30(24): p. 3344-3346.
    17. De Vos, K., et al., Silicon-on-Insulator microring resonator for sensitive and
    label-free biosensing. Optics Express, 2007. 15(12): p. 7610-7615.
    18. Fan, X., et al., Sensitive optical biosensors for unlabeled targets: A review.
    Analytica Chimica Acta, 2008. 620(1-2): p. 8-26.
    19. Liedberg, B., C. Nylander, and I. Lundstrom, SURFACE-PLASMON RESONANCE
    FOR GAS-DETECTION AND BIOSENSING. Sensors and Actuators, 1983. 4(2): p.
    299-304.
    20. Jung, L.S., et al., Quantitative interpretation of the response of surface
    plasmon resonance sensors to adsorbed films. Langmuir, 1998. 14(19): p.
    5636-5648.
    21. Singh, B.K. and A.C. Hillier, Surface plasmon resonance imaging of
    biomolecular interactions on a grating-based sensor array. Analytical
    Chemistry, 2006. 78(6): p. 2009-2018.
    22. Stewart, M.E., et al., Quantitative multispectral biosensing and 1D imaging
    using quasi-3D plasmonic crystals. Proceedings of the National Academy of
    Sciences of the United States of America, 2006. 103(46): p. 17143-17148.
    23. Pang, L., et al., Spectral sensitivity of two-dimensional nanohole array surface
    plasmon polariton resonance sensor. Applied Physics Letters, 2007. 91(12).
    24. Li, Y.-C., et al., Differential-phase surface plasmon resonance biosensor.
    Analytical Chemistry, 2008. 80(14): p. 5590-5595.
    25. Regatos, D., et al., Au/Fe/Au multilayer transducers for magneto-optic surface
    plasmon resonance sensing. Journal of Applied Physics. 108(5).
    26. Liu, J.M., photonic Devices. 2005.
    27. You, C.Y. and S.C. Shin, Derivation of simplified analytic formulae for
    magneto-optical Kerr effects. Applied Physics Letters, 1996. 69(9): p.
    1315-1317.
    28. 吳民耀、劉威志, 表面電漿子與模擬. 物理雙月刊, 2006. 28(2).
    29. Belotelov, V.I., et al., Enhanced magneto-optical effects in magnetoplasmonic
    crystals. Nat Nano. 6(6): p. 370-376.
    30. Moharam, M.G., et al., FORMULATION FOR STABLE AND EFFICIENT
    IMPLEMENTATION OF THE RIGOROUS COUPLED-WAVE ANALYSIS OF BINARY
    GRATINGS. Journal of the Optical Society of America a-Optics Image Science
    77
    and Vision, 1995. 12(5): p. 1068-1076.
    31. Li, L.F., Use of Fourier series in the analysis of discontinuous periodic
    structures. Journal of the Optical Society of America a-Optics Image Science
    and Vision, 1996. 13(9): p. 1870-1876.
    32. Lalanne, P. and G.M. Morris, Highly improved convergence of the
    coupled-wave method for TM polarization. Journal of the Optical Society of
    America a-Optics Image Science and Vision, 1996. 13(4): p. 779-784.
    33. Granet, G. and B. Guizal, Efficient implementation of the coupled-wave
    method for metallic lamellar gratings in TM polarization. Journal of the
    Optical Society of America a-Optics Image Science and Vision, 1996. 13(5): p.
    1019-1023.
    34. Popov, E. and M. Neviere, Grating theory: new equations in Fourier space
    leading to fast converging results for TM polarization. Journal of the Optical
    Society of America a-Optics Image Science and Vision, 2000. 17(10): p.
    1773-1784.
    35. Watanabe, K., R. Petit, and M. Neviere, Differential theory of gratings made of
    anisotropic materials. Journal of the Optical Society of America a-Optics
    Image Science and Vision, 2002. 19(2): p. 325-334.
    36. Temnov, V.V., et al., Active magneto-plasmonics in hybrid metal-ferromagnet
    structures. Nature Photonics. 4(2): p. 107-111.
    37. Clavero, C., et al., Magnetic field modulation of intense surface plasmon
    polaritons. Optics Express. 18(8): p. 7743-7752.
    38. Armelles, G., et al., Magnetoplasmonic nanostructures: systems supporting
    both plasmonic and magnetic properties. Journal of Optics a-Pure and
    Applied Optics, 2009. 11(11).
    39. Yoon, K.H., M.L. Shuler, and S.J. Kim, Design optimization of nano-grating
    surface plasmon resonance sensors. Optics Express, 2006. 14(11): p.
    4842-4849.
    40. Korpela, J., AVIDIN, A HIGH-AFFINITY BIOTIN-BINDING PROTEIN, AS A TOOL
    AND SUBJECT OF BIOLOGICAL-RESEARCH. Medical Biology, 1984. 62(1): p.
    5-26.
    41. aldrich, s.
    42. Frasconi, M., F. Mazzei, and T. Ferri, Protein immobilization at gold-thiol
    surfaces and potential for biosensing. Analytical and Bioanalytical Chemistry,
    2010. 398(4): p. 1545-1564.
    43. Fujiwara, K., et al., Measurement of antibody binding to protein immobilized
    on gold nanoparticles by localized surface plasmon spectroscopy. Analytical
    and Bioanalytical Chemistry, 2006. 386(3): p. 639-644.
    78
    44. Polzius, R., et al., Real-time observation of affinity reactions using grating
    couplers: Determination of the detection limit and calculation of kinetic rate
    constants. Analytical Biochemistry, 1997. 248(2): p. 269-276.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE