研究生: |
謝秉恆 Hsieh, ping-heng |
---|---|
論文名稱: |
CuInS2 延伸式閘極離子感測場效電晶體之研究 The Study on Ionic Sensitivity of CuInS2 Thin Film for Extended Gate Field Effect Transistor |
指導教授: |
陳建瑞
Chen, Jiann-Ruey |
口試委員: |
洪茂峰
陳伯宜 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 場效電晶體 、生物感測 、CuInS2 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自離子感測場效電晶體(ISFET)發明以來,在氧化物及氮化物感測膜上已有很廣泛的研究,此外,更進一步發展出延伸式閘極離子感測場效電晶體(EGFET),此結構能防止水溶液侵入電晶體閘極(Gate),並能更專注於感測薄膜的開發,也易於改變感測薄膜的形狀。而由於閘極為延伸式感測薄膜,故更需低阻抗、導電率高的薄膜。
本論文在ITO表面上使用水熱法鍍 CuInS2硫化膜,以不同溫度退火下的薄膜作為感測薄膜應用在延伸式閘極離子感測場效電晶體,針對 pH 值、銅離子、銀離子、鉛離子,測量其對離子感應的靈敏度。
本論文得知,500。C退火CuInS2薄膜,對各種離子靈敏度最佳,對氫離子可達56.2 mV/pH,對銅離子可達44.8 mV/pCu,對銀離子可達51.2 mV/pAg,對鉛離子可達39.7 mV/pPb,線性相關係數皆可達0.938以上。
本論文將使用兩種不同的EGFET作業方式,分別為 N-type MOSFET-EGFET Linear Mode以及N-type MOSFET-EGFET Saturation Mode,取得其對應的靈敏度,期望能得知感測薄膜帶在VG或VT改變的影響,並藉由量測I-V的特性來推斷 CuInS2 對離子的感測靈敏度,同時也將薄膜作物理性質分析,包括XRD分析、SEM分析、EDX分析、ESCA分析。
[1] Rainbow, P.S., “Trace metal concentrations in aquatic invertebrates: why and so what?” Environmental Pollution, Vol. 120, pp.497-507(2002)
[2] 行政院環境保護署環境檢驗所-環境檢測方法
[3] L.L. Chi a, J.C. Chou, W.Y. Chung , T.P. Sun, S.K. Hsiung, Study on extended gate field effect transistor with tin oxide sensing membrane, Materials Chemistry and Physics 63 (2000) 19–23
[4] P. D. Batista and M. Mulato, ZnO extended-gate field-effect transistors as pH sensors, APPLIED PHYSICS LETTERS 87, 143508 (2005) ]
[5] J. C. Chou and J. L. Chiang, “Study on the Amorphous WO3 Ion Sensitive Field Effect Transistor”, Sensors and Actuators B: Chemical, Vol. 66, No. 106, 2000, pp. 106-108.
[6] J. C. Chou and J. L. Chiang, “Ion Sensitive Field Effect Transistor with Amorphous Tungsten Trioxide Gate for pH Sensing”, Sensors and Actuators B: Chemical, Vol. 62, No. 2, 2000, pp. 81-87.
[7] L.L. Chi a, J.C. Chou, W.Y. Chung , T.P. Sun, S.K. Hsiung, Study of indium tin oxide thin film for separative extended gate ISFET, Materials Chemistry and Physics 70 (2001) 12–16
[8] Y.L. Chin, J.C. Chou, Z. C. Lei, T. P. Sun, S.K. Hsiung, Titanium Nitride Membrane Application to Extended Gate Field Effect Transistor pH Sensor Using VLSI Technology, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 6311–6315.
[9] J.F. Hsu, B.R. Huang, C.S. Huang, H.L. Chen, Silicon Nanowires as pH Sensor, Japanese Journal of Applied Physics Vol. 44, No. 4B, 2005, pp. 2626–2629.
[10] J.C. Chen, J.C. Chou, T.P. Sun, S.K. Hsiung, Portable urea biosensor based on the extended-gate field effect transistor, Sensors and Actuators B 91 (2003) 180–186.
[11] Y.L. Ji, The study on ionic sensitivity of AgIn5S8 thin film for extended gate field effect transistor, Nation Tsing Hua University Master Thesis.
[12] P. Bergveld, Development of an Ion-sensitive Solid State Device for Neurophysiological Measurements, IEEE Trans. on Bio-Med. Eng. (1970) 70-71.
[13] C.D. Fung, P.W. Cheung, W.H. Ko, A generalized theory of an electrolyte-insulator-semiconductor filed-effect transistor, IEEE Trans. Electron Devices, vol. ED-33, No.1, (1986) 8-18.
[14] Prof.Dr.Ir.P.Bergveld Em, ISFET, Theory and Practice, IEEE Sensor Conference Toronto, October 2003.
[15] D.E. Yate, S. Levine, T.W. Healy, Site-binding model of the electrical double layer at the oxide/water interface, Juournal of the Chemical Society Faraday Transactions I 70, 1974, pp. 1807-1818.
[16] R.E.G Van Hall, J.C.T. Eijkel, P Bergveld, 1995, “A Novel Description of ISFET
Sensitivity with the Buffer Capacity and Double-layer Capacitance as Key
Parameters” , sensors and actuators B, Vol. 24-25 PP.201-205.
[17] P. Woias, L. Meixner, D. Amandi, M. Schonberger, 1995, “Modelling the
Short-Time Response of ISFET Sensors”, sensors and actuators B, Vol.24-
25, PP.211-217.
[18] M.S Frant, “History of the early commercialization of ion-selective electrodes.”
Analyst Vol. 199, pp.2293-2301,1994
[19] M.E. Meyerchoff, W.N. Opdyycke, “Ion selective electrodes.” Advances in
Clinical Chemistry, Vol. 25, pp. 1-47, 1986.
[20] K. Covington, “Ion-selective electrode methodology”, CRC press ,p.6 ,1979
[21] IUPAC, “Recommendations for nomenclature of ion-selective electrodes”, Pure
Applied Chemistry, Vol.17 , pp.2527-2536, 1994
[22] M.J.D. Brand and G.A. Rechnitz, Mechanistic studies on Crystal-membrane
Ion-selective Electrode
[23]L.J. Bousse, N.F> de Rooij and p. Bergveld, Operation of Chemically sensitive
Field-Electrolyte Transistors as a Function of the Insulator-Electrolyte Interface,
IEEE Trans. Electron Devices. ED-30 (1983) 1263-1270
[24]M.N. Niu, X.F. Ding, Q.Y. Tong, Effect of Two Types of Surface Sites on the Characteristics of Si3N4-Gate pH-ISFETs, Sensors and Actuators, B37 (1996) 13-17.
[25] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, The extended gate chemical sensitive field effect transistor as multi-species microprobe, Sensors and Actuators, 4 (1983) 291-298.
[26] K. Das, S.K. Panda, S. Gorai, P. Mishra, S. Chaudhuri, Effect of Cu/In ratio on
the micro structural and optical of microcrystalline CuInS2 prepared by solvothermal route
[27] Chia-Chun Chang , Chia-Jui Liang , Kong-Wei Cheng, Physical properties and
photoresponse of Cu–Ag–In–S semiconductor electrodes created using
chemical bath deposition
[28] K Das, S K Panda, S Chaudhuri, Fabrication of nano-structured CuInS2 thin films
by ion layer gas reaction method
[29] A. Joswig, M. Gossla, H. Metzner, U. Reislöhner, Th. Hahn, and W. Witthuhn,
Sulphurization of singel phase Cu11In9 precursors for CuInS2 solar cells
[30] Wenjin Yue, Shikui Han, Ruixiang Peng, Wei Shen, Hongwei Geng, Fan Wu,
Shanwen Tao and Mingtai Wang, CuInS2 quantum dots synthesized by a
solvothermal route and their application as effective electron acceptors for hybrid
solar cells