簡易檢索 / 詳目顯示

研究生: 江若帆
Jiang, Ruo-Fan
論文名稱: 軟磁性鈷鐵硼異質結構之高頻特性研究
High Frequency Characteristics in CoFeB Based Soft Magnetic Heterostructures
指導教授: 賴志煌
Lai, Chih-Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 173
中文關鍵詞: 高頻軟磁性材料阻尼係數鈷鐵硼氧化鎂
外文關鍵詞: high frequency, soft magnetic material, damping parameter, CoFeB, MgO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • With the development of magnetic information storage technology, especially when data rates approach 1 GHz and above, new insight into the magnetization dynamics in ferromagnetic materials becomes a more pressing need. In this thesis, our recent studies of the static/ dynamic magnetic properties in high-resistive CoFeB based heterostructures and their effects on high frequency characteristics of coplanar microstrip inductors are presented.

    First of all, the Co40Fe40B20/ MgO multilayer thin films (MLs) annealed at 225~275oC show high resistivity (ρ = 524.0 μΩ-cm), high saturation magnetization (4πMS = 16 kG), high real-part permeability (μ' = 450), and a rather low damping parameter (α = 0.0054 ± 0.0001). The extrinsic contributions of dynamic damping, determined by using the 3-GHz permeameter with the presence of a biasing magnetic field are reduced when multilayer thin films are annealed at temperatures below 300oC, leading to a decreased α. The CoFeB/ MgO multilayer thin films, annealed at the temperatures equal to or higher than 300oC show the enhanced saturation magnetization as well as a significant increase in damping parameter α due to the occurrence of bcc (200) texture in CoFeB induced by (200) textured MgO layers. The correlation between Q-factor (μ'/ μ", inverse of magnetic loss tangent) and the damping parameter α is experimentally demonstrated and verified that α is one of key parameters to determine Q-factors of highly-resistive soft magnetic heterostructures used for the GHz range.

    The knowledge of chemical and magnetic conditions at the Co40Fe40B20/ MgO interface is important to interpret the annealing temperature dependence of static/ dynamic magnetic properties of MgO/ CoFeB/ MgO multilayer thin films, which are improved with annealing temperature ranging from 175oC to 275oC, and are degraded after annealing above 300oC. In the second topic, we present results from an x-ray photoemission spectroscopy study of MgO/ CoFeB/ MgO multilayer thin films. The interfacial Fe2O3 at the top CoFeB/ MgO interface due to oxidation of CoFeB during MgO deposition is found in the as-grown samples, and it is partially reduced after annealing at 275oC.
    The reduction of interfacial oxides improves static/ dynamic magnetic properties. However, the static/ dynamic soft magnetic properties of the CoFeB/ MgO multilayer thin films are significantly deteriorated for higher annealing temperature, which cannot be attributed to Fe2O3 reduction but the crystallization of CoFeB. Moreover, the significant amounts of diffused B as BOX are observed at the interface in the as deposited samples, and annealing further incorporates B in to the MgO forming a composite MgBXOY. Inserting a thin Mg layer between CoFeB and MgO introduces an oxygen sink, providing increased control of interface quality in the MgO/ CoFeB/ MgO multilayer thin films.

    We finally describe the class of coplanar microtrip inductors with magnetic cores consisting of [Co40Fe40B (5 nm)/ MgO (5 nm)]40 multilayer thin films. The highly-resistive CoFeB-based soft magnetic heterostructures is chosen for its good combination of static and dynamic magnetic properties that minimizes the hysteresis losses, eddy-current losses, and dynamic relaxation losses. Therefore, the increase in inductance L of 60% is obtained, and further enhancement can be achieved by increasing the stacking number and/ or reducing the thickness of the MgO layer. The quality factor Q (ωL/ R) of the inductors can be manipulated by controlling the damping parameter α of the CoFeB/ MgO MLs, and reaches up to 7.5-7.7 at frequencies of about 500 MHz. The magnetic field tunable microstrip inductors with a large tunable Q (ΔQ/ Q0) up to 70-90% are also obtained, by annealing the devices at the temperatures from 225oC to 275oC. Such tuning ability of Q is due to the significant modification of dynamic relaxation losses (damping parameter α and ferromagnetic resonance frequency fres), since the effects of applied DC magnetic field on hysteresis losses and eddy-current losses are not pronounced at the same frequency (500 MHz). The concept of magnetic-field tunable inductors using highly-resistive and low-α materials as the magnetic cores may lead to a brand-new vision of compact thin film inductors with better performance and minimum power consumption.


    近年來由於高速無線數據產業與多重無線傳輸技術(多模組)之蓬勃發展,整合新穎高頻鐵磁薄膜與深次微米CMOS工藝技術發展高品質、小體積的平面薄膜電感器,將有助於放寬相關射頻電路設計的要求,因此可採用更複雜且完整的系統技術,減少耗電量、生產成本、電路版面積與測試成本,同時提供整體性能和製造良率,甚至是兼顧綠色環保概念的提倡。

    本論文之目的主要為開發應用於微波頻段通訊技術之鐵磁薄膜。第一部分,利用超高真空直流/ 射頻濺鍍系統製備新型鈷鐵硼/ 氧化鎂異質結構多層膜系統,不僅具備相當高的電阻率,更表現出符合高頻應用之絕佳軟磁特性。其中我們特別強調與動態磁化損耗相關之磁性阻尼係數的探討,發現在施予適當磁場退火處理之後(225o至275oC),磁性阻尼係數產生大幅下降的趨勢,進而提升新型鈷鐵硼/ 氧化鎂異質結構多層膜系統之高頻磁性品質。此研究顛覆了長久以來視磁性阻尼係數為現象學參數的傳統概念,確定其為可藉由實驗設計而調整的重要技術因子。

    於本論文的第二部分,藉由X光光電子能譜以及高解析穿透式電子顯微技術之輔助,我們完整地釐清於新型鈷鐵硼/ 氧化鎂異質結構多層膜系統中,磁性阻尼係數隨磁場退火處理變化的原因,其中包含著界面三氧化二鐵的還原(低於275oC)以及鈷鐵硼成核結晶/ 晶粒成長(高於300oC)等相關機制。因此,我們進一步設計於鈷鐵硼/ 氧化鎂界面置入金屬鎂(硼亦可)做為氧離子吸收層以抑制界面三氧化二鐵生成之系列實驗,更證實上述所提機制之可靠性,將可做為未來於相關高頻鐵磁異質結構材料開發的指導準則。

    整合新型鈷鐵硼/ 氧化鎂異質結構多層膜系統之共平面微帶型電感器於本研究論文之最終階段被開發,一方面確定鐵磁薄膜對電感器感值提升之效果,另一方面成功地驗證材料端鐵磁薄膜之磁性阻尼係數與元件端電感器之品質因子的相關性。同時,我們亦針對整合新型鈷鐵硼/ 氧化鎂異質結構多層膜系統之共平面微帶型電感器的可調性進行探討,觀察到磁性電感器的品質因子實可藉由外在磁場的施加產生相對提升,而其改善比例似與鐵磁薄膜之磁性阻尼係數的數值大小有關。此研究論文之成果預期將提供相關技術團隊一嶄新的視野,刺激搭配鐵磁薄膜之射頻電路以及系統基頻處理元件集成乃至於未來產品的實現。

    Contents Abstract (In English)…………………………………………………I Abstract (In Chinese)……………………………………………….IV List of Contents……………………………………………………..VI List of Figures………………………………………………………..X List of Tables……………………………………………………….XIX Chapter 1 Introduction……………………………………………….1 1.1 Motivation …………………………………….…….....2 1.2 This Thesis………………………………………………..5 Chapter 2 Background ………………………….................9 2.1 GHz Magnetic-Integrated Thin Film Inductor ………...9 2.1.a. Sandwiched Meander/ Spiral………………………..14 2.1.b. Planar Solenoid……………………………………...15 2.1.c. Sandwiched Strip………………………………………16 2.2 GHz Soft Magnetic materials ……………...…………..18 2.2.a. Soft Ferrites……………………………………………..18 2.2.a (1). Spinels………………………………………...19 2.2.a (2). Garnets………………………………………...20 2.2.a (3). Hexaferrites…………………………………..22 2.2.b. Soft Ferromagnetic Alloys/ Heterostructures.23 2.2.b (1). Amorphous/ Nanocrystalline Materials…..25 2.2.b (2). Magnetic Metal/ Insulator Multilayers….29 2.2.b (3). Nano-Granular Heterostructures……………33 2.3 Summary of Losses in Soft Magnetic Materials ………37 2.3.a. Hysteresis Loss……………………………………...38 2.3.b. Eddy Current and Dielectric Loss…………......41 2.3.c. Dynamic Relaxation Loss…………………………….44 2.4 Magnetization Dynamics and Damping Parameter ………46 2.4.a. Magnetization Dynamics…………………………….....46 2.4.b. Ferromagnetic Dynamics Equations………………..49 2.4.c. Magnetization Dynamics in Thin Films………….....51 2.4.d. Damping Mechanisms in Magnetic Materials…….....53 2.4.d (1). Mechanisms of Intrinsic Damping…………......56 2.4.d (2). Origins of Extrinsic Damping……........65 Chapter 3 Experimental Techniques……………..............69 3.1 Static Magnetic Property Characterization ………….69 3.1.a. Vibrating Sample Magnetometer (VSM)……………....69 3.2 Magnetization Dynamics Investigation …….………...71 3.2.a. RF Permeability Measurement (3-GHz)………………..71 3.3 Structural and Compositional Analyses …….………..74 3.3.a. X-ray Photoemission Spectroscopy (XPS)…………….74 3.4 Scattering Parameter Extraction …….………........76 3.4.a. Network Analyzer…………………………………….....77 3.5 Film Fabrication …….………………………...........79 3.5.a. DC/ RF Magnetron Sputtering System………………...79 Chapter 4 Low Damping in Highly-Resistive CoFeB/ MgO Multilayer Thin Films for Microwave Applications………....81 4.1 Introduction …….………............................81 4.1.a. Amorphous/ Nanocrystalline CoFeB Thin Films……82 4.1.b. Highly-Resistive Soft Magnetic Heterostructures..........................................83 4.2 Experimental Procedures …….……….................87 4.2.a. Samples….……………………………………………...87 4.2.b. Complex Permeability Characterization……………88 4.3 Results and Discussions …….……….................90 4.4 Summary …….………................................106 Chapter 5 Damping in CoFeB/ MgO Multilayer Thin Films: Physical Mechanisms and Correlations with Composition and Structure................................................107 5.1 Introduction …….………...........................107 5.2 Experimental Procedures …….………................111 5.3 Results and Discussions …….………................112 5.3.a. Interfacial and Magnetic Dead Layer Studies….112 5.3.b. Interfacial Structure and Composition Changes During Annealing….………………………………………........118 5.3.c. Effect of Mg interlayer on Static/ Dynamic Magnetic Properties in MgO/ CoFeB/ MgO Multilayer Thin Films….………………………………………...................125 5.4 Summary …….………................................130 Chapter 6 Integrated Coplanar Microstrip Lines with CoFeB-based Soft Magnetic Heterostructures…………………………131 6.1 Introduction …….………..........................131 6.2 Experimental Procedures …….………...............135 6.3 Results and Discussions …….………...............138 6.3.a. Magnetic-Integrated Coplanar Microstrip Lines: Effects of Damping Parameter α in CoFeB-based Soft Magnetic Heterostructures……………….............……..138 6.3.b. Magnetic-Integrated Coplanar Microstrip Lines: Magnetic Field Tunable GHz Quality Factor (ωL/ R) Response…………………………...............………...…..144 6.4 Summary …….………...............................153 Chapter 7 Conclusions.............................................154 Reference...............................................158

    Chapter 1

    [1] M. Yamaguchi, K. Suezawa, K. I. Arai, S. Kikuchi, W. D. Li, Y. Shimada, S. Tanabe, and K. Ito, J. Appl. Phys. 85, 7919 (1999).
    [2] D. Gardner, A. M. Crawford, and S. Wang, Proceedings of the 2001 IEEE IITC, 101 (2001).
    [3] I. Fergen, K. Seemann, A. v. d. Weth, and A. Schüppen, Proceedings of the First Joint European Magnetic Symposia TU-A1-I1 (2001).
    [4] H. J. Kim, Proceedings of the Korea ReCAMM Joint Symposium, Japan Ari EC, (2001).
    [5] M. Yamaguchi, K. H. Kim, T. Kuribara, and K. I. Arai, IEEE Trans. Magn. 38, 3183 (2002).
    [6] K. Tan, M. Yamaguchi, K. Yamanaka, K. Ouchi, and K. I. Arai, IEEE Trans. Magn. 37, 2004 (2001).
    [7] M. Yamaguchi, H. Kikuchi, S. Sugimoto, K. I. Arai, M. Iwanami, A. Nakamura, and S. Hoshino, Proceedings of the IEEE 10th Topical Meeting on Electrical Performance of Electronic Packaging, 321 (2001).
    [8] T. L. Gilber, IEEE Trans. Magn. 40, 3443 (2004).
    [9] L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).
    [10] T. L. Gilbert, Ph.D. dissertation, Illinois Institute of Technology, (1956).
    [11] J. N. Burghartz, IEEE Trans. Elec. Dev. 50, 718 ( 2003).
    [12] G. J. Carchon, X. Sun, and W. De Raedt, Proc. Electronic Components Technology Conf. ECT04, 1118 (2004).
    [13] S. Pinel, C. H. Lee, S.W. Yoon, S. Nuttinck, K. Lim, and J. Laskar, IEEE Microwave Wireless Component Lett. 17, 80 (2004).
    [14] C. P. Yue and S. S. Wong, IEEE Solid-State Circuits 33, 743.
    [15] I. Fergen, K. Seemann, A. v. d. Weth, and A. Schüppen, J. Magn. Magn. Mater. 242, 146 (2002).
    [16] M. Yamaguchi, K. H. Kim, and S. Ikedaa, J. Magn. Magn. Mater. 304, 208 (2006).
    [17] V. Korenivski, J. Magn. Magn. Mater. 215, 800 (2000).
    [18] G. F. Dionne, IEEE Trans. Magn. 39, 3121 (2003).

    Chapter 2

    [1] N. Saleh and A. H. Qureshi, Electron. Lett. 6, 850 (1970).
    [2] R. F. Soohoo, IEEE Trans. Magn. MAG-15, 1803 (1979).
    [3] K. Kawabe, H. Koyama, and K. Shirae, IEEE Trans. Magn. MAG-20, 1804 (1984).
    [4] O. Oshiro, K. Kawabe, H. Tsujimoto, and K. Shirae, IEEE Transl. J. Magn. Japan TJMJ-2, 331 (1987).
    [5] O. Oshiro, H. Tsujimoto, and K. Shirae, IEEE Trans. J. Magn. Japan TJMJ-2, 329 (1987).
    [6] M. Yamaguchi, M. Matsumoto, H. Ozheki, and K. I. Arai, IEEE Trans. Magn. 27, 5274 (1991).
    [7] M. Yamaguchi, S. Arakawa, H. Ozheki, Y. Hayashi, and K. I. Arai, IEEE Trans. Magn. 28, 3015 (1992).
    [8] V. Korenivski and R. B. van Dover, J. Appl. Phys. 82, 5247 (1987).
    [9] K. Shirakawa, H. Kurata, J. Toriu, H. Matsuki, and K. Murakami, IEEE Trans. Magn. 27, 5432 (1991).
    [10] K. Shirakawa, IEEE Transl. J. Magn. Japan 9, 116 (1994).
    [11] C. H. Lee, D. H. Shin, D. H. Ahn, S. E. Nam, and H. J. Kim, J. Appl. Phys. 85, 4898 (1999).
    [12] M. Yamaguchi, K. Suezawa, K. I. Arai, Y. Takahashi, S. Kikuchi, Y. Shimada, W. D. Li, S. Tanabe, and K. Ito, J. Appl. Phys. 85, 7919 (1999).
    [13] B. Viala, S. Couderc, A. S. Royet, P. Ancey, and G. Bouche, IEEE Trans. Magn. 41, 3544 (2005).
    [14] M. Yamaguchi, K. H. Kim, and S. Ikedaa, J. Magn. Magn. Mater. 304, 208 (2006).
    [15] M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000).
    [16] S. Chikazumi, Physics of Magnetism, 4329 (1964).
    [17] D. B. Chrisey, P. C. Dorsey, J. D. Adams, and H. Buhay, Handbook of Thin Film Devices 4, 143 (2000).
    [18] B. C. Webb, M. E. Re, M. A. Russak, and C. V. Jahnes, J. Appl. Phys. 68, 4290 (1990).
    [19] M. Xu, T. M. Liakopoulos, C. H. Ahn, S. H. Han, and H. J. Kim, IEEE Trans. Magn. 34, 1369 (1998).
    [20] O. Gérardin, J. Ben Youssef, H. Le Gall, N. Vukadinovic, P. M. Jacquart, and M. J. Donahue, J. Appl. Phys. 88 (10), 5899 (2000).
    [21] R. Boll and H. Warlimont, IEEE Trans Magn. 17, 3053 (1981)
    [22] C. W. Chen, Magnetism and metallurgy of soft magnetic Materials. New York: Dover, (1986).
    [23] H. S. Jung, W. D. Doyle, and S. Matsunuma, J. Appl. Phys. 93, 6462 (2003).
    [24] V. A. Vas’ko, J. O. Rantschler, and M. T. Kief, IEEE Trans. Magn. 40, 2335 (2004).
    [25] R. S. Sundar and S. C. Deevi, Inter. Mater. Rev. 50, 157 (2005).
    [26] G. Herzer and H. Warlimont, Nanostructured Mater. 1, 263 (1992).
    [27] G. Herzer, J. Magn. Magn. Mater. 112, 258 (1992).
    [28] M. E. McHenry, M. A. Willard, and D. E. Laughlin, Prog. Mater. Sci. 44, 291 (1999).
    [29] M. A. Willard, D. E. Laughlin, M. E. McHenry, D. Thoma, K. Sickafus, J. O. Cross, and V. G. Harris, J. Appl. Phys. 84, 6773 (1998).
    [30] M. M. Raja, K. Chattopadhyay, B. Majumdar, and A. Narayanasamy, J. Alloys Compounds 297, 199 (2000).
    [31] A. Makino, T. Hatanai, Y. Naitoh, T. Bitoh, A. Inoue, and T. Masumoto, IEEE Trans. Magn. 33, 3793 (1997).
    [32] M. A. Willard, M. Q. Huang, D. E. Laughlin, M. E. McHenry, J. O. Cross, and C. Franchetti, J. Appl. Phys. 85, 4421 (1999).
    [33] K. Kawabe, H. Koyama, and K. Shirae, IEEE Trans. Magn. 20, 1804 (1984).
    [34] V. Korenivski and R. B. van Dover, IEEE Trans. Magn. 34, 1375 (1998).
    [35] K. Ikeda, K. Kobayashi, and M. Fujimoto, J Appl. Phys. 92, 5395 (2002).
    [36] Y. G. Ma and C. K. Ong, J. Phys. D: Appl. Phys. 40, 3286 (2007).
    [37] G. S. D. Beach, A. E. Berkowitz, F. T. Parker, and D. J. Smith, Appl. Phys. Lett. 79, 224, (2001).
    [38] G. S. D. Beach and A. E. Berkowitz, IEEE Trans. Magn. 41, 2043 (2005).
    [39] G. S. D. Beach and A. E. Berkowitz, IEEE Trans. Magn. 41, 2053 (2005).
    [40] S. Ohnuma, H. Fujimori, T. Masumoto, X. Y. Xiong, D. H. Ping, and K. Hono, Appl. Phys. Lett. 82, 946 (2003).
    [41] J. Y. Park, S. R. Kim, J. Kim, K. Y. Kim, S. H. Han, and H. J. Kim, J. Magn. Soc. Jpn. 23, 243 (1999).
    [42] H. J. Lee, S. Mitani, T. Shima, S. Nagata, and H. Fujimori, J. Magn. Soc. Jpn. 23, 246 (1999).
    [43] N. Ihara, S. Narushima, T. Kijima, H. Abeta, T. Saito, K. Shinagawa, and T. Tsushima, Jpn. J. Appl. Phys., Part 1 38, 6272 (1999).
    [44] S. Ohnuma, N. Kobayashi, and T. Masumoto, J. Appl. Phys. 85, 4574 (1999).
    [45] K. Ikeda, K. Kobayashi, and M. Fujimoto, J. Am. Ceram. Soc. 85, 169 (2002).
    [46] Y. Liu, C. Y. Tan, Z. W. Liu, and C. K. Ong, Appl. Phys. Lett. 90, 112506 (2007).
    [47] H. Greve, C. Pochstein, H. Takele, V. Zaporojtchenko, F. Faupel, A. Gerber, M. Frommberger, and E. Quandt, Appl. Phys. Lett. 89, 242501 (2006).
    [48] J. B. Goodenough, IEEE Trans. Magn. 38, 3398 (2002).
    [49] G. Bertotti, IEEE Trans. Magn. 28, 2599 (1992).
    [50] C. P. Steinmetz, Trans. Amer. Inst. Electr. Eng. 9, 3 (1892).
    [51] J. A. Tegopoulos and E. E. Kriezis, Eddy Currents in Linear Conducting Media. New York, NY: Elsevier (1985).
    [52] H. A. Wheeler, Proc. I. R. E. 30, 412 (1942).
    [53] L. Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153 (1935).
    [54] N. Bloembergen, Phys. Rev. 78, 572 (1950).
    [55] F. Bloch, Phys. Rev. 70, 460 (1946).
    [56] T. A. Gilbert. Armour research foundation, rep. 11 (1955).
    [57] T. L. Gilbert, IEEE Trans. Magn. 40, 3443, (2004).
    [58] D. O. Smith, J. Appl. Phys. 29, 264 (1958).
    [59] S. Chikazumi and S. H. Charap. Physics of Magnetism. Krieger Co., Florida, (1978).
    [60] T. J. Silva, C. S. Lee, T. M. Crawford, and C. T. Rogers, J. Appl. Phys. 85, 7849 (1999).
    [61] J. Lindner, K. Lenz, E. Kosubek, K. Baberschke, D. Spoddig, R. Meckenstock, J. Pelzl, Z. Frait, and D. L. Mills, Phys. Rev. B 68, 060102(R) (2003).
    [62] K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, and A. Jánossy, Phys. Rev. B 73, 144424 (2006).
    [63] Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. Frait, Phys. Rev. B 76, 104416 (2007).
    [64] V. Korenman and R. E. Prange, Phys. Rev. B 6, 2769 (1972).
    [65] J. Kuneš and V. Kamberský, Phys. Rev. B 65, 212411 (2002).
    [66] M. Sparks, Ferromagnetic Relaxation Theory. McGraw-Hill, New
    York, (1964).
    [67] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. Lett. 88, 117601 (2002).
    [68] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer. Phys. Rev. B 66, 224403 (2002).
    [69] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer. J. Appl. Phys. 93, 7534 (2003).
    [70] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin. Rev.Mod. Phys. 77, 1375 (2005).
    [71] N. Mo, Y. Y. Song, and C. E. Patton, J. Appl. Phys. 97, 093901 (2005).
    [72] A. V. Nazarov, D. Menard, J. J. Green, C. E. Patton, G. M. Argentina, and H. J. Van Hook, J. Appl. Phys. 94, 7227 (2003).
    [73] R. D. McMichael, D. J. Twisselmann, and A. Kunz, Phys. Rev. Lett. 90, 227601 (2003).
    [74] A. Butera, J. Gómez, J. L. Weston, and J. A. Barnard, J. Appl. Phys. 98, 033901 (2005).
    [75] G. Woltersdorf and B. Heinrich, Phys. Rev. B 69, 184417 (2004).
    [76] J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structures III-Fundamental of nanomagnetism. Springer, Berlin, (2005).
    [77] G. Counil, J. V. Kim, T. Devolder, C. Chappert, K. Shigeto, and Y. Otani, J. Appl. Phys. 95, 5646 (2004).
    [78] S. S. Kalarickal, P. Krivosik, M. Z. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).
    [79] G. Woltersdorf, M. Buess, B. Heinrich, and C. H. Back, Phys. Rev. Lett. 95, 037401 (2005).
    [80] S. S. Kalarickal, P. Krivosik, J. Das, K. S. Kim, and C. E. Patton, Phys. Rev. B 77, 054427 (2008).

    Chapter 3

    [1] S. Foner, Rev. Sci. Instrum. 30, 548 (1959).
    [2] M. Yamaguchi, S. Yabukami, and K. I. Arai, IEEE Trans. Magn. 32, 4941 (1996).
    [3] V. Korenivski, R. B. vanDover, P. M. Mankiewich, Z. Xma, A. J. Becker, P.A. Polakos, and V.J. Fratello, IEEE Trans. Magn. 32, 4905 (1996).
    [4] M. Yamaguchi, S. Yabukami, and K. I. Arai, Sensors and Actuators 81, 212 (2000).
    [5] P. Queffelec, P. Galin, J. Gieraltowski, and J. Loãec, IEEE Trans. Magn. 30, 224 (1994).
    [6] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Duverger, J. Appl. Phys. 85, 5151 (2000).
    [7] E. Salahun, P. Quéffélec, M. Le Floćh, P. Gelin, and G. Tanné, IEEE Trans. Magn. 37, 2743 (2001).
    [8] C. A. Grimes, P. L. Trouilloud, and R. M. Walser, IEEE Trans. Magn. 24, 603 (1988).
    [9] B. C. Webb, M. E. Re, C. V. Jahnes, and M. A. Russak, J. Appl. Phys. 69, 5611 (1991).
    [10] H. M. Musal Jr., IEEE Trans. Magn. 28, 3129 (1992).
    [11] M. Yamaguchi, Y. Miyazawa, K. Kaminishi, H. Kikuchi, S. Yabukami, K. I. Arai, and T. Suzuki, J. Magn. Magn. Mater. 268, 170 (2004).
    [12] C. Nordling, E. Sokolowski, and K. Siegbahn, Phys. Rev. 105, 1676 (1957)
    [13] E. Sokolowski, C. Nordling, and K. Siegbahn, Ark. Fysik. 12, 301 (1957)
    [14] K. Kurokawa, IEEE Trans. Micro. Theory and Tech., 194 (1965)
    [15] J. Choma and W. K. Chen, Feedback networks: theory and circuit applications, World Scientific. Chapter 3, 225 (2007)
    [16] Pozar and M. David, Microwave Engineering, 3rd-Edition, 170 (2005).
    [17] A. H. Morton, Advanced Electrical Engineering, 33 (1985).

    Chapter 4

    [1] Y. W. Zhao, X. K. Zhang, and J. Q. Xiao, Adv. Mater. 17, 915 (2005).
    [2] K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater. 283, 310 (2004).
    [3] E. Salahun, P. Quéffélec, G. Tanné, A. Adenot, and O. Acher, J. Appl. Phys. 91, 5449 (2002).
    [4] Y. Hayakawa, A. Makino, H. Fujimori, and A. Inoue, J. Appl. Phys. 81, 3747 (2002).
    [5] T. J. Klemmer, K. A. Ellis, L. H. Chen, B. van Dover, and S. Jin, J. Appl. Phys. 87, 830 (2000).
    [6] T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
    [7] M. Pardavi-Horvath, J. Magn. Magn. Mater. 215, 171 (2000).
    [8] C. Scheck, L. Cheng, and W. E. Bailey, Appl. Phys. Lett. 88, 252510 (2006).
    [9] S. H. Kong, T. Okamoto, and S. Nakagawa, IEEE Trans. Magn. 287, 281 (2005).
    [10] S. H. Kong, T. Okamoto, and S. Nakagawa, IEEE Trans. Magn. 40, 2389 (2004).
    [11] C. Bilzer, T. Devolder, J. V. Kim, G. Counil, C. Chappert, S. Cardoso, and P. P. Freitas, J. Appl. Phys. 100, 053903 (2006).
    [12] J. Rantschler, Y. Ding, S. C. Byeon, and C. Alexander, Jr., J. Appl. Phys. 93, 6671 (2003)
    [13] C. Alexander, Jr., J. Rantschler, T. J. Silva, and P. Kabos, J. Appl. Phys. 87, 6633 (2000).
    [14] Y. Liu, Z. W. Liu, C. Y. Tan, and C. K. Ong, J. Appl. Phys. 100, 093912 (2006).
    [15] K. Seemann, H. Leiste, and A. Kovács, J. Magn. Magn. Mater. 320, 1952 (2008).
    [16] J. S. Liao, Z. Feng, J. Qiu, and Y. Tong, Phys. Stat. Sol. (a) 205, 2943 (2008).
    [17] S. Tanabe, Y. Shiraki, K. Itoh, M. Yamaguchi, and K. Arai, IEEE Trans. Magn. 35, 3580 (1999).
    [18] T. Sato, Y. Miura, S. Matsumura, K. Yamasawa, S. Morita, Y. Sasaki, T. Hatanai, and A. Makino, J. Appl. Phys. 83, 6658 (1998).
    [19] F. Xu, X. Chen, Y. Ma, N. N. Phuoc, X. Zhang, and C. K. Ong, J. Appl. Phys. 104, 083915 (2008).
    [20] M. Munakata, M. Yagi, M. Motoyama, Y. Shimada, M. Baba, M. Yamaguchi, and K. I. Arai, IEEE Trans. Magn. 37, 2258 (2001).
    [21] G. S. D. Beach and A. E. Berkowitz, IEEE Trans. Magn. 41, 2043 (2005)
    [22] Y. Liu, C. Y. Tan, Z. W. Liu, and C. K. Ong, J. Appl. Phys. 101, 023912 (2007).
    [23] D. Y. Kim, S. S. Yoon, B. P. Rao, C. Kim, K. H. Kim, and M. Takahashi, IEEE Trans. Magn. 44, 3115 (2008).
    [24] J. B. Youssef, N. Vukadinovic, D. Billet, and M. Labrune, Phys. Rev. B 69, 174402 (2004).
    [25] G. Counil, J. V. Kim, T. Devolder, C. Chappert, K. Shigeto, and Y. Otani, J. Appl. Phys. 95, 5646 (2004).
    [26] S. S. Kalarickal, P. Krivosik, M. Z. Wu, C. E. Patton, M. L. Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J. Appl. Phys. 99, 093909 (2006).
    [27] L. H. Chen, Y. H. Shih, K. A. Ellis, S. Jin, R. B. van Dover, and T. J. Klemmer, IEEE Trans. Magn. 36, 3418 (2000).
    [28] A. Hashimoto, T. Matsuu, M. Tada, and S. Nakagawa, J. Appl. Phys. 103, 07E734 (2008).
    [29] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys., Part 2 44, L587 (2005).
    [30] T. Takeuchi, K. Tsunekawa, Y. S. Choi, Y. Nagamine, D. D. Djayaprawira, A. Genseki, Y. Hoshi, and Y. Kitamoto, Jpn. J. Appl. Phys. 46, L623 (2007).
    [31] M. Oogane, T. Wakitani, S. Yakata, R. Yilgin, Y. Ando, A. Sakuma, and T. Miyazaki, Jpn. J. Appl. Phys. 45, 3889 (2006).
    [32] A. Yang, H. Imrane, J. Lou, J. Kirkland, C. Vittoria, N. X. Sun, and V. G. Harris, J. Appl. Phys. 103, 07E736 (2008).
    [33] E. Negusse, A. Lussier, J. Dvorak, Y. U. Idzerda, S. R. Shinde, Y. Nagamine, S. Furukawa, K. Tsunekawa, and D. D. Djayaprawira, Appl. Phys. Lett. 90, 092502 (2007).
    [34] Kh. Zakeri, J. Lindner, I. Barsukov, R. Meckenstock, M. Farle, U. von Hörsten, H. Wende, W. Keune, J. Rocker, S. S. Kalarickal, K. Lenz, W. Kuch, K. Baberschke, and Z. Frait, Phys. Rev. B 76, 104416 (2007).
    [35] G. Woltersdorf, M. Buess, B. Heinrich, and C. H. Back, Phys. Rev. Lett. 95, 037401 (2005).
    [36] J. P. Michel, Y. Lamy, A. S. Royet, and B. Viala, IEEE Trans. Magn. 42, 3368 (2006).
    [37] J. B. Goodenough, IEEE Trans. Magn. 38, 3398 (2002).
    [38] I. Zine-El-Abidine, M. Okoniewski, and J. G. McRory, Proc. Int. Conf. MEMS, Nano, and Smart Systems, 114 (2003).
    [39] A. A. Adly, IEEE Trans. Magn. 37, 2891 (2001).
    [40] G. Chai, D. Xue, X. Fan, X. Li, and D. Guo, Appl. Phys. Lett. 93, 152516 (2008).

    Chapter 5

    [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S. H. Yang, Nat. Meter. 3, 862 (2004)
    [2] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nat. Mater. 3, 868 (2004).
    [3] D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005).
    [4] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, Jpn. J. Appl. Phys. 44, L587 (2005).
    [5] S. Yuasa, Y. Suzuki, T. Katayama, and K. Ando, Appl. Phys. Lett. 87, 242503 (2005).
    [6] C. Park, J. G. Zhu, M T. Moneck, Y. Peng, and D. E. Laughlin, J. Appl. Phys. 99, 08A901 (2006).
    [7] Y. Jang, C. Nam, K. S. Lee, B. K .Cho, Y. J. Cho, K. S. Kim, and K. W. Kim, Appl. Phys. Lett. 91, 102104 (2007).
    [8] J. C. Read, P. G. Mather, and R. A. Buhrman, Appl. Phys. Lett. 90, 132503 (2007).
    [9] J. Schmalhorst, A. Thomas, G. Reiss, X. Kuo, and E. Arenholz, J. Appl. Phys. 102, 053907 (2007).
    [10] Q. Leng, H. Han, M. Mao, C. Hiner, and F. Ryan, J. Appl. Phys. 87, 6621 (2000).
    [11] K. Hayashi, M. Sawada, H. Yamagami, A. Kimura, and A. Kakizaki,
    Physica B 351, 324 (2004).
    [12] Y. H. Wang, W. C. Chen, S. Y. Yang, K. H. Seng, C. Park, M. J. Kao, and M. J. Tasi, J. Appl. Phys. 99, 08M307 (2006).
    [13] K. Oguz, P. Jivrajka, M. Venkatesan, G. Feng, and J. M. D. Coey, J. Appl. Phys. 103, 07B526 (2008).
    [14] D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, London, 1992), Chap. 4.
    [15] S. S. Kalarickal, N. Mo, P. Krivosik, and C. E. Patton, Phys. Rev. B 79, 094427 (2009).
    [16] H. L. Meyerheim, R. Popescu, J. Kirschner, N. Jedrecy, M. Sauvage-Simkin, B. Heinrich, and R. Pinchaux, Phys. Rev. Lett. 87, 076102 (2001).
    [17] T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441 (2008).
    [18] J. J. Cha, J. C. Read, R. A. Buhrman, and D. A. Muller, Appl. Phys. Lett. 91, 062516 (2007)
    [19] J. Y. Bae, W. C. Lim, H. J. Kim, T. D. Lee, K. W. Kim, and T. W. Kim, J. Appl. Phys. 99, 08T316 (2006).
    [20] J. Schmalhorst, M. D. Sacher, A. Thomas, B. Brückl, G. Reiss, and K. Starke, J. Appl. Phys. 97, 123711 (2005).
    [21] G. X. Miao, K. B. Chetry, A. Gupta, W. H. Butler, K. Tsunekawa, D. Djayaprawira, and G. Xiao, J. Appl. Phys. 99, 08T305 (2006).
    [22] J. Mathon and A. Umerski, Phys. Rev. B 71, 220402(R) (2005).
    [23] K. D. Belashchenko, J. Velev, and E. Y. Tsymbal, Phys. Rev. B 72, 140404(R) (2005).
    [24] K. Tsunekawa, D. Djayaprawira, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 87, 072503 (2005).
    [25] Y. S. Choi, Y. Nagamine, K. Tsunekawa, H. Maehara, D. Djayaprawira, S. Yuasa, and K. Ando, Appl. Phys. Lett. 90, 012505 (2007).

    Chapter 6

    [1] J . N. Burghartz, IEEE Trans. Electron Devices 50, 718 (2003).
    [2] G. J. Carchon, X. Sun, and W. De Raedt, Proc. Electronic Components Technology Conf. (ECT04), 1118 (2004).
    [3] S. Pinel, C. H. Lee, S. W. Yoon, S. Nuttinck, K. Lim, and J. Laskar, IEEE Microwave Wireless Components Lett. 17, 80 (2004).
    [4] B. Viala, A. S. Royet, and S. Couderc, IEEE Trans. Magn. 41, 3583 (2005).
    [5] B. Orlando, A. S. Royet, and B. Viala, IEEE Trans. Magn. 42, 3371 (2006).
    [6] D. S. Gardner, G. Schrom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, R. Hallstein, T. Dambrauskas, C. Hill, C. Linde, W. Worwag, R. Baresel, and S. Muthukumar, J. Appl. Phys. 103, 07E927 (2008).
    [7] P. Kh. Amiri, B. Rejaei, Y. Zhuang, M. Vroubel, D. W. Lee, S. X. Wang, and J. N. Berghartz, IEEE Trans. Magn. 44, 3103 (2008).
    [8] K. Kawabe, H. Koyama, and K. Shirae, IEEE Trans. Magn. 20, 1804 (1984).
    [9] V. Korenivski and R. B. van Dover, IEEE Trans. Magn. 34, 1375 (1998).
    [10] I. Zien-El-Abidine, M. Okoniewski, and J. G. McRory, Proc. Int. Conf. MEMS, Nano, and Smart System, 114 (2003).
    [11] M. Vroubel, Z. Yan, B. Rejaei, and J. N. Berghartz, IEEE Electron Device Lett. 25, 787 (2004).
    [12] V. M. Lubecke, B. Barber, E. Chan, D. Lopez, M. E. Gross, and P. Gammel, IEEE Trans. Micro. Theory Tech. 49, 2093 (2001).
    [13] D. R. Pehlke, A. Burstein, and M. F. Chang, Int. Electron Devices Meeting Tech. Dig., 63 (1997).
    [14] S. F. Lim, K. S. Yeo, J. G. Ma, M. A. Do, K. W. Chew, and S. F. Chu, Proc. Int. Symp. VLSI Technology, Systems, and Applications, 147 (2003).
    [15] R. Mukhopadhyay, P. Yunseo, P. Sen, N. Srirattana, L. Jongsoo, L. Chang-Ho, S. Nuttinck, A. Joseph, J. D. Cressler, and J. Laskar, IEEE Trans. Micro. Theory Tech. 53, 81 (2005).
    [16] Z. Shifang, S. Xi-Qing, and W. N. Carr, Proc. Int. Conf. Solid State Sensors and Actuators 2, 1137 (1997).
    [17] I. Zine-El-Abidine, M. Okoniewski, and J. G. McRory, Proc. 15th Int. Conf. Microwaves, Radar and Wireless Communications 3, 817 (2004).
    [18] J. Lou, D. Reed, M. Liu, and N. X. Sun, Appl. Phys. Lett. 94, 112508 (2009).
    [19] Y. Y. Song, J. Das, P. Krivosik, N. Mo, and C. E. Patton, Appl. Phys. Lett. 94, 182505 (2009).
    [20] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
    [21] X. Fang, N. Zhang, and Z. L. Wang, Appl. Phys. Lett. 93, 102503 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE