研究生: |
陳宏育 Chen,Horng Yue |
---|---|
論文名稱: |
PEDOT:PSS與量測條件對PIN平面型鈣鈦礦太陽能電池光伏參數之效應分析 Effect of PEDOT:PSS and Measurement Conditions on The Photovoltaic Parameters of PIN Planar Perovskite Solar Cell |
指導教授: |
洪勝富
Horng,Sheng Fu |
口試委員: |
冉曉雯
孟心飛 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 鈣鈦礦太陽電池 、溶液製程 、量測條件 |
外文關鍵詞: | perovskite solar cell, solution process, measurement condition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以全溶液製程方式製作出有機-無機混成鈣鈦礦太陽電池,元件結構為ITO/PEDOT:PSS/perovskite(CH3NH¬3PbI3)/PCBM/Al,藉由改變PEDOT:PSS型號,以型號AI4083與PH1000完成兩個太陽能電池元件並比比較兩個太陽能電池在量測上的差異,發現PH1000元件在量測有無遮罩的情況下,會嚴重的影響量測結果,甚至使量測結果失真,後續再對量測上做更深入的討論,發現量測的掃描速率與掃描方向均會因遲滯現象的產生而影響量測結果,而以本論文的太陽能電池而言,以慢掃描速率的情況下量測下所量測出來的結果會較具有參考價值。
We used all-solution method to fabricate organic-inorganic perovskite solar cells. The device structure was ITO/PEDOT:PSS/Perovskite(CH3NH-3PbI3)/PCBM/Al.First,we used different type of PEDOT:PSS,AI4083 and PH1000 as hole transport layer to make two solar cells and compare the difference of measurement condition.We found highly conductive PEDOT:PSS-PH1000 significantly affects the observation results.Therefore,mask shadowing should be used to avoid getting wrong measurement result.In addition,scan rate and scan direction also affect measurement result.We found scan rate and scan direction have huge impact on measurement result due to hysteresis.In term of our device structure,the measurement result became stabilized with slow scan rate.Under slow scan rate,the measurement result is of valuable reference.
1. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, 1954. 25(5): p. 676-677.
2. Masuko, K., et al., Achievement of More Than 25%; Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. Photovoltaics, IEEE Journal of, 2014. 4(6): p. 1433-1435.
3. Green, M.A., et al., Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications, 2015. 23(1): p. 1-9.
4. Matsui, T., et al., Development of highly stable and efficient amorphous silicon based solar cells. Proceedings of the 28th EU PVSEC, 2013: p. 2213-2217.
5. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
6. Hoppe, H. and N.S. Sariciftci, Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
7. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
8. Im, J.-H., et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
9. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2012. 2.
10. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
11. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
12. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. advance online publication.
13. Boopathi, K.M., et al., Preparation of metal halide perovskite solar cells through a liquid droplet assisted method. Journal of Materials Chemistry A, 2015. 3(17): p. 9257-9263.
14. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
15. Kim, J.H., et al., Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Advanced Energy Materials, 2015. 5(4): p. n/a-n/a.
16. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
17. Roldan-Carmona, C., et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 2014. 7(3): p. 994-997.
18. You, J., et al., Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 2014. 8(2): p. 1674-1680.
19. Zhou, H., et al., Interface engineering of highly efficient perovskite solar cells. Science, 2014. 345(6196): p. 542-546.
20. http://www.nanomark.org.tw/epaper/pdf/TANIDA-38-1.pdf