研究生: |
蘇清源 Su, Ching-Yuan |
---|---|
論文名稱: |
應用奈米碳管及氮化硼奈米管於研製高效能有機光伏元件及其特性之研究 Application of carbon nanotubes and boron nitride nanotubes for the efficiency enhancement in organic photovoltaic device |
指導教授: |
蔡春鴻
Tsai, Chuen-Horng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 197 |
中文關鍵詞: | 奈米碳管 、氮化硼 、氮化硼奈米管 、太陽能電池 、有機太陽能電池 、光伏元件 |
外文關鍵詞: | carbon nanotube, boron nitride, boron nitride nanotube, solar cell, organic solar cell, photovoltaic device |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we investigated that quasi-one-dimensional nanomaterials of single-walled carbon nanotubes (SWCNTs) and boron-nitride nanotubes(BNNTs) been used to enhance the photovoltaic performance and device lifetime in an organic photovoltaic (OPV) cells, respectively.
In the first task, we fabricated and characterized OPV devices with hybrid composite anodes containing SWCNT networks sandwiched between ITO and PEDOT:PSS. We found that Voc of our OPV devices was insensitive to SWCNTs’ work function shifting caused by the employed chemical treatments, while Jsc and PCE both increased in the order of : reference devices < devices with pristine SWCNT networks < devices with H2SO4/HNO3-treated SWCNT networks < cells with N2H4-treated SWCNT networks. Compared to reference devices, Jsc and PCE of devices with N2H4-treated SWCNT networks were enhanced by 14% and 12%, respectively. The devices with N2H4-treated SWCNTs could lead to a maximum PCE up to 4.02%. The enhanced photovoltaic performance exhibited by our OPV devices with N2H4-treated SWCNTs could be attributed to better carrier extraction and phase segregation. Most importantly, for the first time, quasi-aligned digitation of planar networked SWCNTs into the active layer after annealing via the spontaneous penetration of multiple individual SWCNTs previously residing on a 2D structure sandwiched between ITO and PEDOT:PSS was observed in this work. The SWCNT digitation/penetration phenomenon was attributed to the minimization of free energy at the interface of the P3HT-containing active layer and the SWCNT-containing composite anode. The digitation of SWCNTs into the active layer as penetrating electrodes promote the hole-harvesting process by suppressing the SCLP effect to increase carrier mobility in P3HT, which also provides a new strategy that can be exploited for the fabrication of high-performance OPV devices.
In the second task, Boron nitride nanotubes were synthesized on a large scale with iron-supported catalysts at low substrate temperatures (900 oC) with a PACVD approach using controlled gas-phase precursors (diborane and ammonia). The structural morphology, chemical composition, and optical and photoluminescence properties of BNNTs were characterized. Moreover, the role of the metal catalyst in this catalytic CVD process was investigated, and a phenomenological model of the growth mechanisms was presented. In addition, the as-grown BNNTs reveal obvious optical absorption in the UV region of the solar spectrum and are exploited for processing BNNTs loaded polymer for packaging of OPV cells in the near future. Based on this concept, the OPV cells were expected to extend the operation lifetime by suppressing the photochemistry-induced degradation.
Reference
Chapter 1
[1] R. McConnell et. al. , the 19th European PV Solar Energy Conference and Exhibition Paris, France June 7–11, (2004)
[2] M. C. Scharber et al., Adv. Mater. 18 789 (2006)
[3] J. Y. Kim et al., Science 317 222 (2007)
[4] H. Y. Chen et al., Nature Photonic 3 649 (2009)
Chapter 2
[1] S. Iijima, Nature 354 56 (1991)
[2] S. Iijima et al., Nature 363 603 (1993)
[3] D. S. Bethune et al., Nature 363 607 (1993)
[4] http://virag. elte.hu/~kurti/science.html; http://nano.mtu.edu/Nanotubes.htm
[5] R. Saito et al., London: Imperial College Press (1998)
[6] K. B. K. Teo et al., Encyclopedia of Nanoscience and Nanotechnology 1, (2003)
[7] T. W. Odom et al., Nature 391 62 (1998)
[8] R. Saito et al., London: Imperial College Press, (1999).
[9] T. W. Ebbesen et al., Nature 358 220 (1992)
[10] A. M. Cassell et al., J. Phys. Chem. B 103 4684 (1999)
[11] T. Kato et al., Chem. Phys. Lett. 381 422 (2003)
[12] Y. C. Choi et al., Synth. Met. 108 159 (2000)
[13] Y. Li et al., Nano Lett. 4 317 (2004)
[14] A. H. Mahan et al., Appl. Phys. Lett. 81 4061 (2002)
[15] S. Maruyama et al., Chem. Phys. Lett. 360 229 (2002)
[16] M. Cantoro et al., Nano Lett. 6 1107 (2006)
[17] F. Kreupl et al., Microelectron. Eng. 64 399 (2002)
[18] Z. Yao et al., Nature 402 273 (1999)
[19] Z. C. Wu et al., Science 305 1273 (2004)
[20] W. B. Choi et al., Appl. Phys. Lett. 75 3129 (1999)
[21] G. Z. Yue et al., Appl. Phys. Lett. 81 355 (2002)
[22] W. I. Milne et al., J. Mater. Chem. 14 1 (2004)
[23] J. A. Misewich et al., Science 300 783 (2003)
[24] A. Star et al., Nano Lett. 3 459 (2003)
[25] J. Kong et al., Science 287 622 (2000)
[26] T. W. Ebbesen et al., Nature 358 220 (1992)
[27] Rubio A et al., Phys. Rev. B 49 5081 (1994)
[28] N.G. Chopra et al., Science 269 966 (1995)
[29] X. Blasé et al., Europhys. Lett. 28 335 (1994)
[30] Y. Chen et al., Appl. Phys. Lett. 84 2430 (2004)
[31] D. Golberg et al., Scr. Mater. 44 1561 (2001)
[32] M. Terrones et al., Mater. Today 10 30 (2007)
[33] D Golberg et al., Adv. Mater. 19 2413 (2007)
[34] E. Hernández et al., Phys. Rev. Lett. 80 4502 (1998)
[35] N. G. Chopra et al., Solid State Commun. 105 297 (1998)
[36] D. Golberg et al., Scr. Mater. 44 1561 (2001)
[37] C. W. Chang et al., Phys. Rev. Lett. 97 085901(2006)
[38] X. Blase et al., Europhys. Lett. 28 335 (1994)
[39] J. S. Wang et al., Nano. Lett. 5 2528 (2005)
[40] D. Golberg et al., MRS Bull. 29 38 (2004)
[41] J. M. Soler et al., J. Phys. Cond. Matter 14 2745 (2002)
[42] J. Wu et al., Nano Lett. 4 647 (2004)
[43] R. Arenal et al., Phys. Rev. Lett. 95 127601 (2005)
[44] C. Y. Zhi et al., Chem. Asian J. 2 1581 (2007)
[45] A. Loiseau et al., Phys. Rev. Lett. 76 4737 (1996)
[46] R. S. Lee et al., Phys. Rev. B 64 1405 (1990)
[47] J. Yu et al., Chem. Mater. 17 5172 (2005)
[48] Y. Shimizu et al., Appl. Phys. Lett. 75 929 (1999)
[49] W. Han et al., Appl. Phys. Lett. 73 3085 (1998)
[50] D. Golberg et al., Chem. Phys. Lett. 308 337 (1990)
[51] C. Y. Zhi et al., Solid State Commun. 135 67 (2005)
[52] X. Z. Wang et al., Electrochim. Acta 52 2841 (2007)
[53] C. Y. Zhi et al., J. Am. Chem. Soc. 127 15 996 (2005)
[54] M. Radosavljevic et al., Appl. Phys. Lett. 82 4131 (2003)
[55] M. Radosavljevic et al., Appl. Phys. Lett. 82 4141 (2003)
[56] J. Cumings et al., AIP Conf. Proc. Series in Electronic Properties of Molecular Nanostructures, New York, American, 577 (2001)
[57] D. Golberg et al., Appl. Phys. Lett. 82 1275 (2003)
[58] H. Chen et al., Opt. Mater. 29 1295 (2007)
[59] S. H. Lim et al., Catal. Today 120 350 (2007)
[60] S. A. Shevlin et al., Phys. Rev. B 76 024104 (2007)
[61] K. Yum et al., Nano. Lett. 6 329 (2006)
Chapter 3
[1] J. Zhao et al., Appl. Phys. Lett. 73 1991 (1998)
[2] O. Schultz et al., Prog. Photovolt. Res. Appl. 12 553 (2004)
[3] T. Egawa et al., In Mater. Res. Soc. Symp. Proc., San Fransisco, California, 482, 1101 (1998)
[4] M. Yoshimi et al., In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 1566 (2003)
[5] R. P. Gale et al., In Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee, Florida, 53 (1990)
[6] R. R.King et al., In Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 124 (2006)
[7] C. J. Keavney et al., In Proceedings of the 21st IEEE Photovoltaic Specialists Conference, Kissimmee, Florida, 141 (1990)
[8] M. A. Contreras et al., Prog. Photovolt. Res. Appl. 13, 209 (2005)
[9] X. Wu et al., In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 995 (2001)
[10] K. Mitchell et al., 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September, 1384 (1998)
[11] M. Gra¨ tzel et al., J. Photochem. Photobiol., A 164 3 (2004)
[12] J. Y. Kim et al., Adv. Mater. 18 572 (2006)
[13] J. Y. Kim et al., Science 317, 222 (2007);
[14] C. N. Hoth et al., Adv. Mater. 19 3973 (2007)
[15] Fraunhofer Institute of Solar Energy System (ISE) website : http://www.ise.fhg.de/publications/2008
[16] Q.B. Meng et al., Langmuir 19 3572 (2003)
[17] R. N. Marks et al., J. Phys.: Condens. Matter 6 1379 (1994)
[18] Z. Bao et al., Appl. Phys. Lett. 69 4108 (1996)
[19] L. Bozano et al., Appl. Phys. Lett. 74 1132 (1999)
[20] R. J. Kline et al., Adv. Mater. 15 1519 (2003)
[21] H. Sirringhaus et al., Science 280 1741 (1998)
[22] M. Kevin et al., Chem. Mater. 16 4533 (2004)
[23] F. Yang et al., Nature Mater. 4 37 (2005)
[24] S. R. Scully et al., J. Appl. Phys. 100 034907 (2006)
[25] D. E. Markov et al., Phys. Rev. B 72 045216 (2005)
[26] P. Peumans et al., J. Appl. Phys. 93 3693 (2003)
[27] M. Ma et al., Macromol. Rapid Commun. 28 1776 (2007)
[28] A. Kongkanand et al., Nano lett. 7 676 (2007)
[29] J. V. D. Lagemaat et al., Appl. Phys. Lett. 88 233503 (2006)
[30] M. R. Reyes et al., Sol. Energy Mater. Sol. Cells 91 1478 (2007)
[31] A. J. Miller et al., Appl. Phys. Lett. 89 133117 (2006)
[32] J. Wei et al., Nano Lett. 7 2317 (2007)
[33] J. U. Lee et al., Appl. Phys. Lett. 87 073101 (2005)
[34] R. E. Cammacho et al., ABI/INFORM Trade and Industry 59 39 (2007)
[35] A. Cao et al., Sol. Energy Mater. Sol. Cells 70 481 (2002)
[36] Z. P. Yang et al., Nano Lett. 8 446 (2008)
[37] U. Wendy et al., Science 295 2425 (2002)
[38] Y. Kang et al., Appl. Phys. Lett. 86 113101 (2005)
[39] S. G. Bailey et al., NASA/CP 213431(2005)
[40] E. Kymakis et al., Appl. Phys. Lett. 80 112 (2002)
[41] L. J. A. Koster et al., Proc. Of SPIE 61920A-1 (2006)
[42] A. J. Miller et al., Appl. Phys. Lett. 90 023105 (2007)
[43] J. Geng, et al., J. AM. CHEM. SOC. 128 16831 (2006)
[44] S. Chaudary et al., Nano Lett. 7 1973 (2007)
[45] M. Kaempgen et al., Appl. Surf. Sci. 252 425 (2005)
[46] P. Beecher et al., Appl. Phys. Lett. 102 043710 (2007)
[47] Q. Cao et al., Adv. Mater. 18 304 (2006)
[48] X. Yu et al., Surf. Coat. Technol. 202 2002 (2008)
[49] M. W. Rowell et al., Appl. Phys. Lett. 88 233506 (2006)
[50] C. Weeks et al., The newsletter Of Tools And Products In Micro And Nanotechology 12 1 (2007)
[51] J. Ravichandran et al., Nanotechnology 19 085712 (2008)
[52] S. M. C. Vieira et al., Appl. Phys. Lett. 91 203111 (2007)
[53] S. Roth et al., Pro. Mat. Res. Soc. Symp.,Warrendale,PA, 772 (2003)
[54] Mikkel et al., Sol. Energy Mater. Sol. Cells 92 686 (2008)
[55] Zhi C. Y. et al., J. Mater. Res. 21 2794 (2006)
[56] Beek W. J. E. et al., J. Phys. Chem. B 109 9505(2005)
Chapter 4
[1] W. Y. Lee et al., Diamond Relat. Mater. 14 1852 (2005)
[2] K. Y. Shin et al., J. Vac. Sci. Techno. B 24 358 (2006)
[3] C. H. Weng et al., Appl. Phys. Lett. 85 4732 (2004)
[4] S. Maruyama et al., Chem. Phys. Lett. 360 229 (2002)
[5] G. Li et al., Nature Mater. 4 864 (2005)
[6] J. J. Yun et al., Appl. Phys. Lett. 92 251912 (2008)
[7] H. C. Lu et al., AIP Conf. Proc. 705 1082 (2004)
[8] H. C. Lu et al., J. Electron Spectr. Relat. Phen. 144 983 (2005)
Chapter 5
[1] W. Y. Lee, H. Lin, L. Gu, K. C. Leou and C. H. Tsai, Diam. Relat. Mat., 2008,
17, 66-71.
[2] M. El-Gomati, F. Zaggout, H. Jayacody, S. Tear and K. Wilson, Surf. Interface Anal., 2005, 37, 901-911.
[3] C. H. Weng, W. Y. Lee, Z. Y. Juang, K. C. Leou and C. H. Tsai, Nanotechnology, 2006, 17, 1-6.
[4] A. Jorio, M. A. Pimenta, A. G. Souza, R. Saito, G. Dresselhaus and M. S. Dresselhaus, New Journal of Physics, 2003, 5.
[5] T. C. Chieu, M. S. Dresselhaus and M. Endo, Physical Review B, 1982, 26, 5867-5877.
[6] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, Chemical Physics Letters, 2002, 360, 229-234.
[7] H. E. Unalan and M. Chhowalla, Nanotechnology, 2005, 16, 2153-2163.
[8] J. X. Geng and T. Y. Zeng, Journal of the American Chemical Society, 2006, 128, 16827-16833.
[9] H. Tantang, J. Y. Ong, C. L. Loh, X. C. Dong, P. Chen, Y. Chen, X. Hu, L. P. Tan and L. J. Li, Carbon, 2009, 47, 1867-1870.
[10] L. M. Ericson, H. Fan, H. Q. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. H. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W. F. Hwang, R. H. Hauge, J. E. Fischer and R. E. Smalley, Science, 2004, 305, 1447-1450.
[11] W. Zhou, J. E. Fischer, P. A. Heiney, H. Fan, V. A. Davis, M. Pasquali and R. E. Smalley, Physical Review B, 2005, 72.
[12] Z. R. Li, H. R. Kandel, E. Dervishi, V. Saini, Y. Xu, A. R. Biris, D. Lupu, G. J. Salamo and A. S. Biris, Langmuir, 2008, 24, 2655-2662.
[13] J. L. Blackburn, T. M. Barnes, M. C. Beard, Y. H. Kim, R. C. Tenent, T. J. McDonald, B. To, T. J. Coutts and M. J. Heben, ACS Nano, 2008, 2, 1266-1274.
[14] T. M. Barnes, J. L. Blackburn, J. van de Lagemaat, T. J. Coutts and M. J. Heben, ACS Nano, 2008, 2, 1968-1976.
[15] A. A. Green and M. C. Hersam, Nature Nanotechnology, 2009, 4, 64-70.
[16] Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, Science, 2004, 305, 1273-1276.
Chapter 6
[1] J. Miller, R. A. Hatton and S. R. P. Silva, Applied Physics Letters, 2006, 89.
[2] S. Chaudhary, H. W. Lu, A. M. Muller, C. J. Bardeen and M. Ozkan, Nano Letters, 2007, 7, 1973-1979.
[3] H. C. Miller, Journal of Applied Physics, 1967, 38, 4501-&.
[4] J. X. Geng and T. Y. Zeng, Journal of the American Chemical Society, 2006, 128, 16827-16833.
[5] J. H. Liu, J. H. Zou and L. Zhai, Macromolecular Rapid Communications, 2009, 30, 1387-1391.
[6] A. W. Musumeci, G. G. Silva, J. W. Liu, W. N. Martens and E. R. Waclawik, Polymer, 2007, 48, 1667-1678.
[7] X. N. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nano Letters, 2005, 5, 579-583.
[8] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Nature, 1999, 401, 685-688.
[9] J. J. Yun, J. Peet, N. S. Cho, G. C. Bazan, S. J. Lee and M. Moskovits, Applied Physics Letters, 2008, 92.
[10] V. Sgobba and D. M. Guldi, Journal of Materials Chemistry, 2008, 18, 153-157.
[11] R. A. Hatton, N. P. Blanchard, L. W. Tan, G. Latini, F. Cacialli and S. R. P. Silva, Organic Electronics, 2009, 10, 388-395.
[12] F. Hennrich, R. Wellmann, S. Malik, S. Lebedkin and M. M. Kappes, Physical Chemistry Chemical Physics, 2003, 5, 178-183.
[13] W. Zhou, J. Vavro, N. M. Nemes, J. E. Fischer, F. Borondics, K. Kamaras and D. B. Tanner, Physical Review B, 2005, 71.
[14] H. Tantang, J. Y. Ong, C. L. Loh, X. C. Dong, P. Chen, Y. Chen, X. Hu, L. P. Tan and L. J. Li, Carbon, 2009, 47, 1867-1870.
[15] M. C. Scharber, D. Wuhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. L. Brabec, Adv. Mater., 2006, 18, 789-+.
[16] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle and R. H. Friend, Journal of Physical Chemistry B, 1999, 103, 8116-8121.
[17] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374-380.
[18] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, Journal of Applied Physics, 2003, 94, 6849-6854.
[19] Y. X. Wang, S. R. Tseng, H. F. Meng, K. C. Lee, C. H. Liu and S. F. Horng, Applied Physics Letters, 2008, 93.
[20] J. Kong and H. J. Dai, Journal of Physical Chemistry B, 2001, 105, 2890-2893.
[21] J. L. Blackburn, T. M. Barnes, M. C. Beard, Y. H. Kim, R. C. Tenent, T. J. McDonald, B. To, T. J. Coutts and M. J. Heben, ACS Nano, 2008, 2, 1266-1274.
[22] C. Klinke, J. Chen, A. Afzali and P. Avouris, Nano Letters, 2005, 5, 555-558.
[23] A. A. Green and M. C. Hersam, Nano Letters, 2008, 8, 1417-1422.
[24] D. S. Germack, C. K. Chan, B. H. Hamadani, L. J. Richter, D. A. Fischer, D. J. Gundlach and D. M. DeLongchamp, Applied Physics Letters, 2009, 94.
[25] L. Y. Park, A. M. Munro and D. S. Ginger, Journal of the American Chemical Society, 2008, 130, 15916-15926.
[26] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma and A. K. Y. Jen, Journal of Materials Chemistry, 2008, 18, 5113-5119.
Chapter 7
[1] Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Phys. Chem. B 1999, 103, 6484.
[2] Su, C. Y.; Juang, Z. Y.; Chen, Y. L.; Leou, K. C.; Tsai, C. H. Diamond Relat. Mater. 2007, 16, 1393.
[3] Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.
[4] Manzo, J. A. R.; Terrones, M.; Terrones, H.; Kroto, H. W.; Sun, L.; Banhart, F. Nature Nanotechnology 2007, 2, 307.
[5] Helveg, S.; Cartes, C. L.; Sehested, J.; Hansen, P.; Clausen, B. S.; Nielsen, J. R. R.; Pedersen, F. A.; Norskov, J. K. Nature 2004, 427, 426.
[6] Ma, R.; Bando, Y.; Sato, T. Chem. Phys. Lett. 2001, 337, 61.
[7] Golberg, D.; Bando, Y.; Bourgeois, L.; Kurashima, K.; Sato, T. Appl. Phys. Lett. 2000, 77, 1979.
[8] Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Adv. Mater. 2007, 19, 2413.
[9] Blasé, X.; Vita, A. D.; Charlie, J. C.; Car, R. Phys. Rev. Lett. 1998, 80, 1666.
[10] Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Chem. Mater. 2001, 13, 2965.
[11] Loiseau, A.;Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.
[12] Lauret, J. S.; Arenal, R.; Ducastelle, F.; Loiseau, A.; Cau, M.; Tretout, B. A.; Rosencher, E. Phys. Rev. Lett. 2005, 94, 37405.
[13] Jaffrennou, P.; Barjon, J.; Lauret, J. S.; Maguer, A.; Golberg, D.; Tretout, B. A.; Ducastelle, F. ; Loiseau, A. Phys. Stat. Sol. (b) 2007, 244, 4147.
[14] Taniguchi, T.; Watanabe, K. J. Cryst. Growth 2007, 303, 525.
[15] Jaffrennou, P.; Barjon, J.; Schmid, T.; Museur, L.; Kanaev, A.; Lauret, J. S.; Zhi, C. Y.; Tang, C.; Bando, Y.; Golberg, D.; Tretout, B. A.; Ducastelle, F.; Loiseau, A. Phys. Rev. B 2008, 77, 235422.
[16] Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; Mc, Vittie J P, Nishi, Y.; Gibbons, J.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141.
[17] Koi, N.; Oku, T.; Nishijima, M. Solid State Coommun. 2005, 136, 342.
[18] Okamoto, H. J. Phase Equilib. Diffus. 2004, 25, 297.
[19] Arenal, R.; Stephan, O.; Cochon, J. L.; Loiseau, A. J. Am. Chem. Soc. 2007, 129, 16183.
[20] Stig, H.; Carlos, L. C.; Jens, S.; Poul, L. H.; Bjerne, S. C.; Jens, R. R. N.; Frank, A. P.; Jens, K. N. Nature 2004, 427, 426.
Appendix
[1] Lacerda, R. G.; Teo, K. B. K.; Teh, A. S.; Yang, M. H.; Dalal, S. H.; Jefferson, D. A.; Durrell, J. H.; Rupesinghe, N. L.; Roy, D.; Amaratunga, G. A. J.; Milne, W. I. J. Appl. Phys. 2004, 96, 4456.
[2] Cassell, A. M.; Raymakers, J. A.; Kong, J.; Dai, H. J. Phys. Chem. B 1999, 103, 6484.
[3] Prabhakaran, K.; Shafi, K. V. P. M.; Ulman, A.; Ajayan, P. M.; Homma, Y.; Ogino, T. Surf. Sci. Lett. 2002, 506, L250.
[4] Arcos, T. de Los; Wu, Z. M.; Oelhafen, P. Chem. Phys. Lett. 2003, 380, 419.
[5] Koi, N.; Oku, T.; Nishijima, M. Solid State Coommun. 2005, 136, 342.
[6] Okamoto, H. J. Phase Equilib. Diffus. 2004, 25, 297.
[7] Koi, N.; Oku, T.; Inoue, M.; Suganuma, K. J. Mater. Sci. 2008, 43, 2955.
[8] Chen, Y.; Chadderton, L. T.; Gerald, J. F.; William, J. S. Appl. Phys. Lett. 1999, 74, 2960.
[9] Su, C. Y.; Chu, W. Y.; Juang, Z. Y.; Chen, K. F.; Cheng, B. M.; Chen, F. R.; Leou, C. L.; Tsai, C. H. J. Phys. Chem. C. 2009, 113, 14732.
[10] Chen, Y.; Conway, M.; William J. S.; Zou, J. J. Mater. Res. 2002, 1896, 17.
[11] Stig, H.; Carlos, L. C.; Jens, S.; Poul, L. H.; Bjerne, S. C.; Jens, R. R. N.; Frank, A. P.; Jens K. N. Nature 2004, 427, 426.
[12] Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141.
[13] Guo, L.; Singh, R. N. Nanotechnology 2008, 19, 65601.
[14] Bai, X. D.; Golberg, D.; Bando, Y.; Zhi, C. Y.; Tang, C. C.; Mitome, M.; Kurashima, K. Nano Lett. 2007, 7, 632.
[15] Blasé, X.; Charlier, J. C.; DeVita, A.; Car, R. Appl. Phys. Lett. 1997, 39, 1760.
[16] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.