研究生: |
黃思瑜 Huang, Ssu-Yu |
---|---|
論文名稱: |
Globo H、DSGb5及唾液酸化 Globo-系列醣體之合成 Synthesis of Globo H, DSGb5, and Globo-Series Sialosides |
指導教授: |
林俊成
Lin, Chun-Cheng |
口試委員: |
吳東昆
Wu, Tung-Kung 游景晴 Yu, Ching-Ching |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 265 |
中文關鍵詞: | 唾液酸化Globo系列醣體 |
外文關鍵詞: | Globo H |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Globo-系列醣體被認為與癌症的演進有很高的關聯性。這些醣體之中,DSGb5被發現大量表達於腎細胞癌 (RCC) 且與 RCC 的轉移有關;而在乳癌細胞表面則大量表現 Gb5、SSEA4以及 Globo H。除外,唾液酸常被發現存在於細胞表面醣體的末端。唾液酸免疫球蛋白凝集素 (Siglecs) 藉由辨識病原體表面的唾液酸來調節免疫細胞功能的運作,癌細胞藉此躲過生理上的免疫防禦機制。Siglecs 被認為是治療免疫相關疾病的明日之星。因此,找尋不同唾液酸鍵結的唾液酸苷以及評估其與 Siglecs 間的親和力相當重要。
本論文利用多種酵素來建構 Globo-系列醣體,包含 Gb3、Gb4、Gb5 及 Globo H,並利用不同來源的唾液酸轉移酶催化上述醣體進行唾液酸化反應,生成 Globo-系列唾液酸苷。除外,亦利用酵素方法成功合成 DSGb5。同時也發現利用不同來源的 -2,6-唾液酸轉移酶 (PdST 及 PspST) 催化 SSEA4進行反應會得到不同的產物。接著,利用醣微矩陣技術來分析 Siglec-7與雙唾液酸化 Globo-系列醣體之間的親和力。實驗發現不具脂鏈的 DSGb5與 Siglec-7的結合力很弱。推測 DSGb5與 Siglec-7的親和力作用可能與脂鏈有關聯。
It is known that globo series of gangliosides are strongly associated with some cancers. Among these glycans, DSGb5 was from renal cell carcinoma (RCC) and was thought to be correlated with RCC metastases while Gb5, SSEA4 and Globo H were overexpressed on breast cancer cells. In addition, sialic acids are usually found at the terminal residue of glycans on the cell surface glycoproteins and glycolipids. Sialic acid-binding Ig-like lectins (Siglecs) regulate the immune cell functions by specifically recognize different sialic acid ligands on the cell surface of pathogens. For example, DSGb5, a preferred ligand for Siglec-7 inhibits the cytotoxicity of NK cells. Siglecs have been considered to be promising theraputic candidates for immune-cell-mediated diseases. Therefore, discovery of new sialosides and evaluation of their binding specificity and affinity with Siglecs are crucial.
In this thesis, we conducted a small library of carbohydrate-active enzymes to construct various globo-series glycans, including Gb3, Gb4, Gb5, and Globo H. The Gb3, Gb4 and Gb5 were further sialylated by different sialyltransferases to yield globo-series sialosides. We have successfully synthesized DSGb5 by enzymatic synthesis. It’s interesting to find that -2,6-sialylation of SSEA4 by different -2,6-sialyltransferases (PdST and PspST) gave different products. The glycan microarray was used to evaluate the binding affinity between Siglec-7 and disialylated Globo-series glycans. It’s surprising to find that DSGb5 without lipid chain only show low binding affinity to Siglec-7, indicating that the lipid chain of glycan might play an important role in Siglecs binding.
1. Sharon, N.; Lis, H., Lectins as Cell Recognition Molecules. Science 1989, 246, 227.
2. Schengrund, C.-L., Gangliosides: Glycosphingolipids Essential for Normal Neural Development and Function. Trends Biochem. Sci 2015, 40, 397-406.
3. Varki, A.; Gagneux, P., Multifarious Roles of Sialic Acids in Immunity. Ann. N.Y. Acad. Sci. 2012, 1253, 16-36.
4. Koeller, K. M.; Wong, C.-H., Enzymes for Chemical Synthesis. Nature 2001, 409, 232-240.
5. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial Biocatalysis Today and Tomorrow. Nature 2001, 409, 258-268.
6. Schoemaker, H. E.; Mink, D.; Wubbolts, M. G., Dispelling the Myths--Biocatalysis in Industrial Synthesis. Science 2003, 299, 1694.
7. Hakomori, S., Glycosylation Defining Cancer Malignancy: New Wine in An Old Bottle. Proc. Natl. Acad. Sci. 2002, 99, 10231-10233.
8. Pinho, S. S.; Reis, C. A., Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015, 15, 540-555.
9. Hakomori, S.-i., Aberrant Glycosylation in Cancer Cell Membranes as Focused on Glycolipids: Overview and Perspectives. Cancer Res. 1985, 45, 2405-2414.
10. Hakomori, S.-i., Tumor-Associated Carbohydrate Antigens. Annu. Rev. Immunol. 1984, 2, 103-126.
11. Fuster, M. M.; Esko, J. D., The Sweet and Sour of Cancer: Glycans as Novel Therapeutic Targets. Nat. Rev. Cancer 2005, 5, 526-542.
12. Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E., Essentials of Glycobiology 2nd Edition. Cold Spring Harbor Laboratory: New York: 2009.
13. Springer, G. F., T and Tn, General Carcinoma Autoantigens. Science 1984, 224, 1198.
14. Fu, C.; Zhao, H.; Wang, Y.; Cai, H.; Xiao, Y.; Zeng, Y.; Chen, H., Tumor‐Associated Antigens: Tn Antigen, sTn Antigen, and T Antigen. HLA 2016, 88, 275-286.
15. Cazet, A.; Julien, S.; Bobowski, M.; Burchell, J.; Delannoy, P., Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research : BCR 2010, 12, 204-204.
16. Narita, T.; Funahashi, H.; Satoh, Y.; Watanabe, T.; Takagi, H.; Sakamoto, J., Association of Expression of Blood Group-Related Carbohydrate Antigens with Prognosis in Breast Cancer. Cancer 1993, 71, 3044-3053.
17. Mangeney, M.; Lingwood, C. A.; Taga, S.; Caillou, B.; Tursz, T.; Wiels, J., Apoptosis Induced in Burkitt's Lymphoma Cells via Gb3/CD77, A Glycolipid Antigen. Cancer Res. 1993, 53, 5314-5319.
18. Brown, K. E.; Anderson, S. M.; Young, N. S., Erythrocyte P Antigen: Cellular Receptor for B19 Parvovirus. Science 1993, 262, 114-117.
19. Chang, W.-W.; Lee, C. H.; Lee, P.; Lin, J.; Hsu, C.-W.; Hung, J.-T.; Lin, J.-J.; Yu, J.-C.; Shao, L.-e.; Yu, J.; Wong, C.-H.; Yu, A. L., Expression of Globo H and SSEA3 in Breast Cancer Stem Cells and the Involvement of Fucosyl Transferases 1 and 2 in Globo H Synthesis. Proc. Natl. Acad. Sci. 2008, 105, 11667-11672.
20. Satoh, M.; Handa, K.; Saito, S.; Tokuyama, S.; Ito, A.; Miyao, N.; Orikasa, S.; Hakomori, S.-i., Disialosyl Galactosylgioboside as An Adhesion Molecule Expressed on Renal Cell Carcinoma and Its Relationship to Metastatic Potential. Cancer Res. 1996, 56, 1932-1938.
21. Vyas, A. A.; Schnaar, R. L., Brain Gangliosides: Functional Ligands for Myelin Stability and The Control of Nerve Regeneration. Biochimie 2001, 83, 677-682.
22. Heimburg-Molinaro, J.; Lum, M.; Vijay, G.; Jain, M.; Almogren, A.; Rittenhouse-Olson, K., Cancer Vaccines and Carbohydrate Epitopes. Vaccine 2011, 29, 8802-26.
23. Coley, W. B., The Treatment of Malignant Tumors by Repeated Inoculations of Erysipelas: With a Report of Ten Original Cases. Am. J. Med. Sci. 1893, 105, 487-511.
24. Danishefsky, S. J.; Allen, J. R., From the Laboratory to The Clinic: A Retrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angew. Chem. Int. Ed. 2000, 39, 836-863.
25. Feng, D.; Shaikh, A. S.; Wang, F., Recent Advance in Tumor-Associated Carbohydrate Antigens (TACAs)-Based Antitumor Vaccines. ACS Chem. Biol. 2016, 11, 850-863.
26. Huang, Y. L.; Hung, J. T.; Cheung, S. K.; Lee, H. Y.; Chu, K. C.; Li, S. T.; Lin, Y. C.; Ren, C. T.; Cheng, T. J.; Hsu, T. L.; Yu, A. L.; Wu, C. Y.; Wong, C. H., Carbohydrate-Based Vaccines with a Glycolipid Adjuvant for Breast Cancer. Proc. Natl. Acad. Sci. 2013, 110, 2517-2522.
27. Ragupathi, G.; Koide, F.; Livingston, P. O.; Cho, Y. S.; Endo, A.; Wan, Q.; Spassova, M. K.; Keding, S. J.; Allen, J.; Ouerfelli, O.; Wilson, R. M.; Danishefsky, S. J., Preparation and Evaluation of Unimolecular Pentavalent and Hexavalent Antigenic Constructs Targeting Prostate and Breast Cancer: A Synthetic Route to Anticancer Vaccine Candidates. J. Am. Chem. Soc. 2006, 128, 2715-2725.
28. Arcangeli, A.; Toma, L.; Contiero, L.; Crociani, O.; Legnani, L.; Lunghi, C.; Nesti, E.; Moneti, G.; Richichi, B.; Nativi, C., Stable GM3 Lactone Mimetic Raises Antibodies Specific for the Antigens Expressed on Melanoma Cells. Bioconjugate Chem. 2010, 21, 1432-1438.
29. Wang, Q.; Guo, Z., Synthetic and Immunological Studies of sTn Derivatives Carrying Substituted Phenylacetylsialic Acids as Cancer Vaccine Candidate. ACS Med. Chem. Lett. 2011, 2, 373-378.
30. Kagan, E.; Ragupathi, G.; Yi, S. S.; Reis, C. A.; Gildersleeve, J.; Kahne, D.; Clausen, H.; Danishefsky, S. J.; Livingston, P. O., Comparison of Antigen Constructs and Carrier Molecules for Augmenting The Immunogenicity of The Monosaccharide Epithelial Cancer Antigen Tn. Cancer Immunol., Immunother. 2005, 54, 424-430.
31. Shinefield, H. R., Overview of The Development and Current Use of CRM197 Conjugate Vaccines for Pediatric Use. Vaccine 2010, 28, 4335-4339.
32. Kannagi, R.; Cochran, N. A.; Ishigami, F.; Hakomori, S.; Andrews, P. W.; Knowles, B. B.; Solter, D., Stage-Specific Embryonic Antigens (SSEA-3 and -4) Are Epitopes of A Unique Globo-Series Ganglioside Isolated from Human Teratocarcinoma Cells. The EMBO Journal 1983, 2, 2355-2361.
33. Danishefsky, S. J.; Shue, Y. K.; Chang, M. N.; Wong, C. H., Development of Globo-H cancer vaccine. Acc. Chem. Res. 2015, 48, 643-652.
34. Gilewski, T.; Ragupathi, G.; Bhuta, S.; Williams, L. J.; Musselli, C.; Zhang, X.-F.; Bencsath, K. P.; Panageas, K. S.; Chin, J.; Hudis, C. A.; Norton, L.; Houghton, A. N.; Livingston, P. O.; Danishefsky, S. J., Immunization of Metastatic Breast Cancer Patients with A Fully Synthetic Globo H Conjugate: A Phase I Trial. Proc. Natl. Acad. Sci. 2001, 98, 3270-3275.
35. Lee, H. Y.; Chen, C. Y.; Tsai, T. I.; Li, S. T.; Lin, K. H.; Cheng, Y. Y.; Ren, C. T.; Cheng, T. J.; Wu, C. Y.; Wong, C. H., Immunogenicity Study of Globo H Analogues with Modification at The Reducing or Nonreducing End of The Tumor Antigen. J. Am. Chem. Soc. 2014, 136, 16844-16853.
36. Zhou, Z.; Liao, G.; Mandal, S. S.; Suryawanshi, S.; Guo, Z., A Fully Synthetic Self-Adjuvanting Globo H-Based Vaccine Elicited Strong T Cell-Mediated Antitumor Immunity. Chem. Soc. 2015, 6, 7112-7121.
37. Eller, C. H.; Chao, T. Y.; Singarapu, K. K.; Ouerfelli, O.; Yang, G.; Markley, J. L.; Danishefsky, S. J.; Raines, R. T., Human Cancer Antigen Globo H is A Cell-Surface Ligand for Human Ribonuclease 1. ACS Cent. Sci. 2015, 1, 181-190.
38. Leland, P. A.; Staniszewski, K. E.; Kim, B.-M.; Raines, R. T., Endowing Human Pancreatic Ribonuclease with Toxicity for Cancer Cells. J. Biol. Chem. 2001, 276, 43095-43102.
39. Bilodeau, M. T.; Park, T. K.; Hu, S.; Randolph, J. T.; Danishefsky, S. J.; Livingston, P. O.; Zhang, S., Total Synthesis of a Human Breast Tumor Associated Antigen. J. Am. Chem. Soc. 1995, 117, 7840-7841.
40. Lassaletta, J. M.; Schmidt, R. R., Synthesis of Complex Glycosphingolipid of The Globo Series. Liebigs Ann. Chem. 1996, 1417-1423.
41. Burkhart, F.; Zhang, Z.; Wacowich-Sgarbi, S.; Wong, C.-H., Synthesis of the Globo H Hexasaccharide Using the Programmable Reactivity-Based One-Pot Strategy. Angew. Chem. Int. Ed. 2001, 40, 1274-1277.
42. Huang, C.-Y.; Thayer, D. A.; Chang, A. Y.; Best, M. D.; Hoffmann, J.; Head, S.; Wong, C.-H., Carbohydrate Microarray for Profiling The Antibodies Interacting with Globo H Tumor Antigen. Proc. Natl. Acad. Sci. 2006, 103, 15-20.
43. Su, D. M.; Eguchi, H.; Yi, W.; Li, L.; Wang, P. G.; Xia, C., Enzymatic Synthesis of Tumor-Associated Carbohydrate Antigen Globo-H Hexasaccharide. Org. Lett. 2008, 10, 1009-1012.
44. Tsai, T.-I.; Lee, H.-Y.; Chang, S.-H.; Wang, C.-H.; Tu, Y.-C.; Lin, Y.-C.; Hwang, D.-R.; Wu, C.-Y.; Wong, C.-H., Effective Sugar Nucleotide Regeneration for The Large-Scale Enzymatic Synthesis of Globo H and SSEA4. J. Am. Chem. Soc. 2013, 135, 14831-14839.
45. Yu, H.; Li, Y.; Zeng, J.; Thon, V.; Nguyen, D. M.; Ly, T.; Kuang, H. Y.; Ngo, A.; Chen, X., Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J. Org. Chem. 2016, 81, 10809-10824.
46. Ito, A.; Levery, S. B.; Saito, S.; Satoh, M.; Hakomori, S.-i., A Novel Ganglioside Isolated from Renal Cell Carcinoma. J. Biol. Chem. 2001, 276, 16695-16703.
47. Satoh, M.; Handa, K.; Saito, S.; Tokuyama, S.; Ito, A.; Miyao, N.; Orikasa, S.; Hakomori, S., Disialosyl Galactosylgioboside as An Adhesion Molecule Expressed on Renal Cell Carcinoma and Its Relationship to Metastatic Potential. Cancer Res. 1996, 56, 1932-1938.
48. Ishida, H.; Miyawaki, R.; Kiso, M.; Hasegawa, A., Synthetic Studies on Sialoglycoconjugates 82: First Total Synthesis of Sialyl Globopentaosyl Ceramide (V3Neu5AcGb5Cer) and Its Positional Isomer (V6Neu5AcGb5Cer)1,2. J. Carbohydr. Chem. 1996, 15, 163-182.
49. Lassaletta, J. M.; Carlsson, K.; Garegg, P. J.; Schmidt, R. R., Total Synthesis of Sialylgalactosylgloboside-Stage-Specific Embryonic Antigen 4. J. Org. Chem. 1996, 61, 6873-6880.
50. Wang, Z.; Gilbert, M.; Eguchi, H.; Yu, H.; Cheng, J.; Muthana, S.; Zhou, L.; Wang, P. G.; Chen, X.; Huang, X., Chemoenzymatic Syntheses of Tumor-Associated Carbohydrate Antigen Globo-H and Stage-Specific Embryonic Antigen 4. Adv. Synth. Catal. 2008, 350, 1717-1728.
51. Saito, S.; Levery, S. B.; Salyan, M. E.; Goldberg, R. I.; Hakomori, S., Common Tetrasaccharide Epitope NeuAca2→3Galbl→3(NeuAca2→6)GalNAc, Presented by Different Carrier Glycosylceramides or O-Linked Peptides, Is Recognized by Different Antibodies and Ligands Having Distinct Specificities. J. Biol. Chem. 1994, 269, 5644-5652.
52. Senda, M.; Ito, A.; Tsuchida, A.; Hagiwara, T.; Kaneda, T.; Nakamura, Y.; Kasama, K.; Kiso, M.; Yoshikawa, K.; Katagiri, Y.; Ono, Y.; Ogiso, M.; Urano, T.; Furukawa, K.; Oshima, S.; Furukawa, K., Identification and Expression of A Sialyltransferase Responsible for The Synthesis of Disialylgalactosylgloboside in Normal and Malignant Kidney Cells: Downregulation of ST6GalNAc VI in Renal Cancers. Biochem. J. 2007, 402, 459-470.
53. Ito, A.; Handa, K.; Withers, D. A.; Satoh, M.; Hakomori, S.-i., Binding Specificity of Siglec7 to Disialogangliosides of Renal Cell Carcinoma: Possible Role of Disialogangliosides in Tumor Progression. FEBS Lett. 2001, 504, 82-86.
54. Kawasaki, Y.; Ito, A.; Withers, D. A.; Taima, T.; Kakoi, N.; Saito, S.; Arai, Y., Ganglioside DSGb5, Preferred Ligand for Siglec-7, Inhibits NK Cell Cytotoxicity against Renal Cell Carcinoma Cells. Glycobiology 2010, 20, 1373-1379.
55. Itoh, J.; Ito, A.; Shimada, S.; Kawasaki, Y.; Kakoi, N.; Saito, H.; Mitsuzuka, K.; Watanabe, M.; Satoh, M.; Saito, S.; Arai, Y., Clinicopathological Significance of Ganglioside DSGb5 Expression in Renal Cell Carcinoma. Glycoconjugate J. 2017, 34, 267-273.
56. Wu, C.-S.; Yen, C.-J.; Chou, R.-H.; Li, S.-T.; Huang, W.-C.; Ren, C.-T.; Wu, C.-Y.; Yu, Y.-L., Cancer-Associated Carbohydrate Antigens as Potential Biomarkers for Hepatocellular Carcinoma. PLOS ONE 2012, 7, e39466.
57. Bourne, Y.; Henrissat, B., Glycoside Hydrolases and Glycosyltransferases: Families and Functional Modules. Curr. Opin. Struct. Biol. 2001, 11, 593-600.
58. Bülter, T.; Elling, L., Enzymatic Synthesis of Nucleotide Sugars. Glycoconjugate J. 1999, 16, 147-156.
59. Li, S.-P.; Hsiao, W.-C.; Yu, C.-C.; Chien, W.-T.; Lin, H.-J.; Huang,-L. D.; Lin, C.-H.; Wu, W.-L.; Wu, S.-H.; Lin, C.-C., Characterization of Meiothermus taiwanensis Galactokinase and Its Use in The One‐Pot Enzymatic Synthesis of Uridine Diphosphate‐Galactose and The Chemoenzymatic Synthesis of The Carbohydrate Antigen Stage Specific Embryonic Antigen‐3. Adv. Synth. Catal. 2014, 356, 3199-3213.
60. Nishimoto, M.; Kitaoka, M., Identification of N-Acetylhexosamine 1-Kinase in The Complete Lacto-N-Biose I/Galacto-N-Biose Metabolic Pathway in Bifidobacterium longum. Appl. Environ. Microbiol. 2007, 73, 6444-6449.
61. Cai, L.; Guan, W.; Wang, W.; Zhao, W.; Kitaoka, M.; Shen, J.; O'Neil, C.; Wang, P. G., Substrate Specificity of N-Acetylhexosamine Kinase towards N-Acetylgalactosamine Derivatives. Bioorg. Med. Chem. Lett. 2009, 19, 5433-5435.
62. Cai, L.; Guan, W.; Kitaoka, M.; Shen, J.; Xia, C.; Chen, W.; Wang, P. G., A Chemoenzymatic Route to N-Acetylglucosamine-1-Phosphate Analogues: Substrate Specificity Investigations of N-Acetylhexosamine 1-Kinase. Chem. Comm. 2009, 2944-2946.
63. Coyne, M. J.; Reinap, B.; Lee, M. M.; Comstock, L. E., Human Symbionts Use a Host-Like Pathway for Surface Fucosylation. Science 2005, 307, 1778-1781.
64. Wang, W.; Hu, T.; Frantom, P. A.; Zheng, T.; Gerwe, B.; del Amo, D. S.; Garret, S.; Seidel, R. D.; Wu, P., Chemoenzymatic Synthesis of GDP-L-Fucose and The Lewis X Glycan Derivatives. Proc. Natl. Acad. Sci. 2009, 106, 16096-16101.
65. Yi, W.; Liu, X.; Li, Y.; Li, J.; Xia, C.; Zhou, G.; Zhang, W.; Zhao, W.; Chen, X.; Wang, P. G., Remodeling Bacterial Polysaccharides by Metabolic Pathway Engineering. Proc. Natl. Acad. Sci. 2009, 106, 4207-4212.
66. Litterer, L. A.; Schnurr, J. A.; Plaisance, K. L.; Storey, K. K.; Gronwald, J. W.; Somers, D. A., Characterization and Expression of Arabidopsis UDP-Sugar Pyrophosphorylase. Plant Physiol. Biochem. 2006, 44, 171-180.
67. Liu, J.; Zou, Y.; Guan, W.; Zhai, Y.; Xue, M.; Jin, L.; Zhao, X.; Dong, J.; Wang, W.; Shen, J.; Wang, P. G.; Chen, M., Biosynthesis of Nucleotide Sugars by A Promiscuous UDP-Sugar Pyrophosphorylase from Arabidopsis thaliana (AtUSP). Bioorg. Med. Chem. Lett. 2013, 23, 3764-3768.
68. Muthana, M. M.; Qu, J.; Li, Y.; Zhang, L.; Yu, H.; Ding, L.; Malekan, H.; Chen, X., Efficient One-Pot Multienzyme Synthesis of UDP-Sugars Using A Promiscuous UDP-Sugar Pyrophosphorylase from Bifidobacterium longum (BLUSP). Chem. Comm. 2012, 48, 2728-2730.
69. Zou, Y.; Xue, M.; Wang, W.; Cai, L.; Chen, L.; Liu, J.; Wang, P. G.; Shen, J.; Chen, M., One-Pot Three-Enzyme Synthesis of UDP-Glc, UDP-Gal, and Their Derivatives. Carbohydr. Res. 2013, 373, 76-81.
70. Guo, Y.; Fang, J.; Li, T.; Li, X.; Ma, C.; Wang, X.; Wang, P. G.; Li, L., Comparing Substrate Specificity of Two UDP-Sugar Pyrophosphorylases and Efficient One-Pot enzymatic Synthesis of UDP-GlcA and UDP-GalA. Carbohydr. Res. 2015, 411, 1-5.
71. Mengin-Lecreulx, D.; van Heijenoort, J., Copurification of Glucosamine-1-Phosphate Acetyltransferase and N-Acetylglucosamine-1-Phosphate Uridyltransferase Activities of Escherichia coli: Characterization of The glmU Gene Product as A Bifunctional Enzyme Catalyzing Two Subsequent Steps in The Pathway for UDP-N-Acetylglucosamine Synthesis. J. Bacterio. 1994, 176, 5788-5795.
72. Guan, W.; Cai, L.; Fang, J.; Wu, B.; George Wang, P., Enzymatic Synthesis of UDP-GlcNAc/UDP-GalNAc Analogs Using N-Acetylglucosamine 1-Phosphate Uridyltransferase (GlmU). Chem. Comm. 2009, 6976-6978.
73. Knorst, M.; Fessner, W.-D., CMP-Sialate Synthetase from Neisseria meningitidis − Overexpression and Application to The Synthesis of Oligosaccharides Containing Modified Sialic Acids. Adv. Synth. Catal. 2001, 343, 698-710.
74. Yi, D.; He, N.; Kickstein, M.; Metzner, J.; Weiß, M.; Berry, A.; Fessner, W.-D., Engineering of A Cytidine 5′-Monophosphate-Sialic Acid Synthetase for Improved Tolerance to Functional Sialic Acids. Adv. Synth. Catal. 2013, 355, 3597-3612.
75. Wakarchuk, W. W.; Cunningham, A.; Watson, D. C.; Young, N. M., Role of Paired Basic Residues in The Expression of Active Recombinant Galactosyltransferases from The Bacterial Pathogen Neisseria meningitidis. Protein Eng. 1998, 11, 295-302.
76. Zhang, J.; Kowal, P.; Chen, X.; George Wang, P., Large-Scale Synthesis of Globotriose Derivatives Through Recombinant E. coli. Org. Biomol. Chem. 2003, 1, 3048-3053.
77. Liu, Z.; Lu, Y.; Zhang, J.; Pardee, K.; Wang, P. G., P1 Trisaccharide (Galα1,4Galβ1,4GlcNAc) Synthesis by Enzyme Glycosylation Reactions Using Recombinant Escherichia coli. Appl. Environ. Microbiol. 2003, 69, 2110-2115.
78. Zhang, J.; Kowal, P.; Fang, J.; Andreana, P.; Wang, P. G., Efficient Chemoenzymatic Synthesis of Globotriose and Its Derivatives with A Recombinant α-(1→4)-Galactosyltransferase. Carbohydr. Res. 2002, 337, 969-976.
79. Fleischmann, R. D.; Adams, M. D.; White, O.; Clayton, R. A.; Kirkness, E. F.; Kerlavage, A. R.; Bult, C. J.; Tomb, J. F.; Dougherty, B. A.; Merrick, J. M.; al, e., Whole-Genome Random Sequencing and Assembly of Haemophilus influenzae Rd. Science 1995, 269, 496.
80. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; George Wang, P., Overexpression and Biochemical Characterization of β-1,3-N-Acetylgalactosaminyltransferase LgtD from Haemophilus influenzae Strain Rd. Biochem. Biophys. Res. Commun. 2002, 295, 1-8.
81. Shao, J.; Zhang, J.; Kowal, P.; Wang, P. G., Donor Substrate Regeneration for Efficient Synthesis of Globotetraose and Isoglobotetraose. Appl. Environ. Microbiol. 2002, 68, 5634-5640.
82. Shao, J.; Zhang, J.; Kowal, P.; Lu, Y.; Wang, P. G., Efficient Synthesis of Globoside and Isogloboside Tetrasaccharides by Using b(1→3) N-Acetylgalactosaminyltransferase/UDP-N-Acetylglucosamine C4 Epimerase Fusion Protein. Chem. Comm. 2003, 1422-1423.
83. Randriantsoa, M.; Drouillard, S.; Breton, C.; Samain, E., Synthesis of Globopentaose Using A Novel β1,3-Galactosyltransferase Activity of The Haemophilus influenzae β1,3-N-Acetylgalactosaminyltransferase LgtD. FEBS Lett. 2007, 581, 2652-2656.
84. Gilbert, M.; Brisson, J.-R.; Karwaski, M.-F.; Michniewicz, J.; Cunningham, A.-M.; Wu, Y.; Young, N. M.; Wakarchuk, W. W., Biosynthesis of Ganglioside Mimics in Campylobacter jejuni OH4384: Identification of the Glycosyltransferase, Genes, Enzymatic Synthesis of Model Compounds, and Characterization of Nanomole Amounts by 600-MHz 1H and 13C NMR Analysis. J. Biol. Chem. 2000, 275, 3896-3906.
85. Bernatchez, S.; Gilbert, M.; Blanchard, M.-C.; Karwaski, M.-F.; Li, J.; DeFrees, S.; Wakarchuk, W. W., Variants of the β1,3-Galactosyltransferase CgtB from the Bacterium Campylobacter jejuni Have Distinct Acceptor Specificities. Glycobiology 2007, 17, 1333-1343.
86. Malekan, H.; Fung, G.; Thon, V.; Khedri, Z.; Yu, H.; Qu, J.; Li, Y.; Ding, L.; Lam, K. S.; Chen, X., One-Pot Multi-Enzyme (OPME) Chemoenzymatic Synthesis of Sialyl-Tn-MUC1 and Sialyl-T-MUC1 Glycopeptides Containing Natural or Non-Natural Sialic Acid. Bioorg. Med. Chem. 2013, 21, 4778-4785.
87. Strasser, R.; Bondili, J. S.; Vavra, U.; Schoberer, J.; Svoboda, B.; Glossl, J.; Leonard, R.; Stadlmann, J.; Altmann, F.; Steinkellner, H.; Mach, L., A Unique Beta1,3-Galactosyltransferase Is Indispensable for The Biosynthesis of N-Glycans Containing Lewis a Structures in Arabidopsis thaliana. Plant Cell 2007, 19, 2278-2292.
88. Yi, W.; Shao, J.; Zhu, L.; Li, M.; Singh, M.; Lu, Y.; Lin, S.; Li, H.; Ryu, K.; Shen, J.; Guo, H.; Yao, Q.; Bush, C. A.; Wang, P. G., Escherichia coli O86 O-Antigen Biosynthetic Gene Cluster and Stepwise Enzymatic Synthesis of Human Blood Group B Antigen Tetrasaccharide. J. Am. Chem. Soc. 2005, 127, 2040-2041.
89. Yi, W.; Perali, R. S.; Eguchi, H.; Motari, E.; Woodward, R.; Wang, P. G., WbiP-Characterization of A Bacterial b-1,3-Galactosyltransferase with Application in The Synthesis of Tumor-Associated T-Antigen Mimics. Biochemistry 2008, 47, 1241–1248.
90. Yu, H.; Thon, V.; Lau, K.; Cai, L.; Chen, Y.; Mu, S.; Li, Y.; Wang, P. G.; Chen, X., Highly Efficient Chemoenzymatic Synthesis of b1-3-Linked Galactosides. Chem. Comm. 2010, 46, 7507-7509.
91. Wang, G.; Boulton, P. G.; Chan, N. W. C.; Palcic, M. M.; Taylor, D. E., Novel Helicobacter pylori α1,2-Fucosyltransferase, A Key Enzyme in The Synthesis of Lewis Antigens. Microbiology 1999, 145, 3245-3253.
92. Stein, D. B.; Lin, Y.-N.; Lin, C.-H., Characterization of Helicobacter pylori α1,2-Fucosyltransferase for Enzymatic Synthesis of Tumor-Associated Antigens. Adv. Synth. Catal. 2008, 350, 2313-2321.
93. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G., Glycosyltransferases: Structures, Functions, and Mechanisms. Annu. Rev. Biochem. 2008, 77, 521-555.
94. Yu, C. C.; Withers, S. G., Recent Developments in Enzymatic Synthesis of Modified Sialic Acid Derivatives. Adv. Synth. Catal. 2015, 357, 1633-1654.
95. Yu, H.; Chokhawala, H.; Karpel, R.; Yu, H.; Wu, B.; Zhang, J.; Zhang, Y.; Jia, Q.; Chen, X., A Multifunctional Pasteurella multocida Sialyltransferase-A Powerful Tool for The Synthesis of Sialoside Libraries. J. Am. Chem. Soc. 2005, 127, 17618-17619.
96. Sugiarto, G.; Lau, K.; Qu, J.; Li, Y.; Lim, S.; Mu, S.; Ames, J. B.; Fisher, A. J.; Chen, X., A Sialyltransferase Mutant with Decreased Donor Hydrolysis and Reduced Sialidase Activities for Directly Sialylating LewisX. ACS Chem. Biol. 2012, 7, 1232-1240.
97. McArthur, J. B.; Yu, H.; Zeng, J.; Chen, X., Converting Pasteurella multocida a2-3-Sialyltransferase 1 (PmST1) to A Regioselective b2-6-Sialyltransferase by Saturation Mutagenesis and Regioselective Screening. Org. Biomol. Chem. 2017, 15, 1700-1709.
98. Thon, V.; Lau, K.; Yu, H.; Tran, B. K.; Chen, X., PmST2: A Novel Pasteurella multocida Glycolipid alpha2-3-Sialyltransferase. Glycobiology 2011, 21, 1206-16.
99. Thon, V.; Li, Y.; Yu, H.; Lau, K.; Chen, X., PmST3 from Pasteurella multocida Encoded by Pm1174 Gene Is A Monofunctional α2–3-Sialyltransferase. Appl. Microbiol. Biotechnol. 2012, 94, 977-985.
100. Chiu, C. P.; Lairson, L. L.; Gilbert, M.; Wakarchuk, W. W.; Withers, S. G.; Strynadka, N. C., Sructural Analysis of the a-2,3-Sialyltransferase Cst-I from Campylobacter jejuni in Apo and Substrate-Analogue Bound Forms. Biochemistry 2007, 46, 7196-7204.
101. Mehta, S.; Gilbert, M.; Wakarchuk, W. W.; Whitfield, D. M., Ready Access to Sialylated Oligosaccharide Donors. Org. Lett. 2000, 2, 751-753.
102. Morley, T. J.; Withers, S. G., Chemoenzymatic Synthesis and Enzymatic Analysis of 8-Modified Cytidine Monophosphate-Sialic Acid and Sialyl Lactose Derivatives. J. Am. Chem. Soc. 2010, 132, 9430–9437.
103. Yu, C.-C.; Hill, T.; Kwan, D. H.; Chen, H.-M.; Lin, C.-C.; Wakarchuk, W.; Withers, S. G., A Plate-Based High-Throughput Activity Assay for Polysialyltransferase from Neisseria meningitidis. Anal. Biochem. 2014, 444, 67-74.
104. Jacques, S.; Rich, J. R.; Ling, C.-C.; Bundle, D. R., Chemoenzymatic Synthesis of GM3 and GM2 Gangliosides Containing A Truncated Ceramide Functionalized for Glycoconjugate Synthesis and Solid Phase Applications. Org. Biomol. Chem. 2006, 4, 142-154.
105. Pukin, A. V.; Florack, D. E. A.; Brochu, D.; van Lagen, B.; Visser, G. M.; Wennekes, T.; Gilbert, M.; Zuilhof, H., Chemoenzymatic Synthesis of Biotin-Appended Analogues of Gangliosides GM2, GM1, GD1a and GalNAc-GD1a for Solid-Phase Applications and Improved ELISA Tests. Org. Biomol. Chem. 2011, 9, 5809-5815.
106. Kajihara, Y.; Yamamoto, T.; Nagae, H.; Nakashizuka, M.; Sakakibara, T.; Terada, I., A Novel α-2,6-Sialyltransferase: Transfer of Sialic Acid to Fucosyl and Sialyl Trisaccharides. J. Org. Chem. 1996, 61, 8632-8635.
107. Yamamoto, T.; Nakashizuka, M.; Terada, I., Cloning and Expression of A Marine Bacterial b-Galactoside a2, 6-Sialyltransferase Gene from Photobacterium damsela JT0160. J. Biochem. 1998, 123, 94-100.
108. Cheng, J.; Huang, S.; Yu, H.; Li, Y.; Lau, K.; Chen, X., Trans-Sialidase Activity of Photobacterium damsela α2,6-Sialyltransferase and Its Application in The Synthesis of Sialosides. Glycobiology 2010, 20, 260-268.
109. Teo, C. F.; Hwang, T. S.; Chen, P. H.; Hung, C. H.; Gao, H. S.; Chang, L. S.; Lin, C. H., Synthesis of Sialyl TN Glycopeptides – Enzymatic Sialylation by α2,6‐Sialyltransferase from Photobacterium damsela. Adv. Synth. Catal. 2005, 347, 967-972.
110. Yu, H.; Huang, S.; Chokhawala, H.; Sun, M.; Zheng, H.; Chen, X., Highly Efficient Chemoenzymatic Synthesis of Naturally Occurring and Non-Natural α-2,6-Linked Sialosides: A P. damsela α-2,6-Sialyltransferase with Extremely Flexible Donor–Substrate Specificity. Angew. Chem. Int. Ed. 2006, 45, 3938-3944.
111. Mine, T.; Miyazaki, T.; Kajiwara, H.; Naito, K.; Ajisaka, K.; Yamamoto, T., Enzymatic Synthesis of Unique Sialyloligosaccharides Using Marine Bacterial α-(2→3)- and α-(2→6)-Sialyltransferases. Carbohydr. Res. 2010, 345, 1417-1421.
112. Nycholat, C. M.; Peng, W.; McBride, R.; Antonopoulos, A.; de Vries, R. P.; Polonskaya, Z.; Finn, M. G.; Dell, A.; Haslam, S. M.; Paulson, J. C., Synthesis of Biologically Active N- and O-Linked Glycans with Multisialylated Poly-N-Acetyllactosamine Extensions Using P. damsela a2-6 Sialyltransferase. J. Am. Chem. Soc. 2013, 135, 18280-18283.
113. Chien, W.-T.; Liang, C.-F.; Yu, C.-C.; Lin, C.-H.; Li, S.-P.; Primadona, I.; Chen, Y.-J.; Mong, K. K. T.; Lin, C.-C., Sequential One-Pot Enzymatic Synthesis of Oligo-N-Acetyllactosamine and Its Multi-Sialylated Extensions. Chem. Comm. 2014, 50, 5786-5789.
114. Tsukamoto, H.; Takakura, Y.; Mine, T.; Yamamoto, T., Photobacterium sp. JT-ISH-224 Produces Two Sialyltransferases, α-/β-Galactoside α2,3-Sialyltransferase and β-Galactoside α2,6-Sialyltransferase. J. Biochem. 2008, 143, 187-197.
115. Ding, L.; Yu, H.; Lau, K.; Li, Y.; Muthana, S.; Wang, J.; Chen, X., Efficient Chemoenzymatic Synthesis of Sialyl Tn-Antigens and Derivatives. Chem. Comm. 2011, 47, 8691-8693.
116. Gilbert, M.; Karwaski, M.-F.; Bernatchez, S.; Young, N. M.; Taboada, E.; Michniewicz, J.; Cunningham, A.-M.; Wakarchuk, W. W., The Genetic Bases for The Variation in The Lipo-Oligosaccharide of The Mucosal Pathogen, Campylobacter jejuni : Biosynthesis of Sialylated Ganglioside Mimics in The Core Oligosaccharide. J. Biol. Chem. 2002, 277, 327-337.
117. Cheng, J.; Yu, H.; Lau, K.; Huang, S.; Chokhawala, H. A.; Li, Y.; Tiwari, V. K.; Chen, X., Multifunctionality of Campylobacter jejuni Sialyltransferase CstII: Characterization of GD3/GT3 Oligosaccharide Synthase, GD3 Oligosaccharide Sialidase, and Trans-Sialidase Activities. Glycobiology 2008, 18, 686-697.
118. 簡薇庭. Sequencial Enzymatic Synthesis of Sugar Nucleotides and Its Application on Poly-LacNAc Synthesis. 博士論文, 國立清華大學, 2012.
119. 侯凱齡. Fluorous-Tag Assisted Chemoenzymatic Synthesis of Oligosaccharides. 碩士論文, 國立清華大學, 2013.
120.郭力禎. Enzymatic Sialylation of Globo-Series Glycans. 碩士論文, 國立清華大學, 2015.
121.李泗芃. Kinetics Studies with Galactokinase from Meiothermus taiwanensis ATCC BAA-400 and Application of Galactokinase to Synthesize Pk Antigen. 碩士論文, 國立清華大學, 2012.
122.游景晴. Site-Specific CMP-Sialic Acid Synthetase Immobilized Magnetic Nanoparticle and Its Application in Organic Synthesis. 碩士論文, 國立清華大學, 2007.
123.游景晴. Development of Nanoparticle-Based System for Enzyme Immobilization and High Through-Put Enzyme Screening. 博士論文, 國立清華大學, 2012.
124.Blix, F. G.; Gottschalk, A.; Klenk, E., Proposed Nomenclature in the Field of Neuraminic and Sialic Acids. Nature 1957, 179, 1088-1088.
125.Angata, T.; Varki, A., Chemical Diversity in the Sialic Acids and Related a-Keto Acids-An Evolutionary Perspective. Chem. Rev. 2002, 102, 439-470.
126.Varki, A., Loss of N-Glycolylneuraminic Acid in Humans: Mechanisms, Consequences, and Implications for Hominid Evolution. Am. J. Phys. Anthropol. 2001, 116, 54-69.
127.Bardor, M.; Nguyen, D. H.; Diaz, S.; Varki, A., Mechanism of Uptake and Incorporation of the Non-human Sialic Acid N-Glycolylneuraminic Acid into Human Cells. J. Biol. Chem. 2005, 280, 4228-4237.
128.Colley, K. J.; Kitajima, K.; Sato, C., Polysialic Acid: Biosynthesis, Novel Functions and Applications. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 498-532.
129.Janas, T.; Janas, T., Membrane Oligo- and Polysialic Acids. Biochim. Biophys. Acta 2011, 1808, 2923-2932.
130.Cohen, M.; Varki, A., The Sialome—Far More Than the Sum of Its Parts. OMICS: J. Integrative Biol. 2010, 14, 455-464.
131.Crocker, P. R.; Paulson, J. C.; Varki, A., Siglecs and Their Roles in the Immune System. Nat. Rev. Immunol. 2007, 7, 255-266.
132.Jiang, T.; Yu, J.-T.; Hu, N.; Tan, M.-S.; Zhu, X.-C.; Tan, L., CD33 in Alzheimer's Disease. Mol. Neurobiol. 2014, 49, 529-535.
133.Rillahan, C. D.; Macauley, M. S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B. M.; Rangarajan, J.; Fokin, V. V.; Paulson, J. C., Disubstituted Sialic Acid Ligands Targeting Siglecs CD33 and CD22 Associated with Myeloid Leukaemias and B Cell Lymphomas. Chem. Soc. 2014, 5, 2398-2406.
134.Campanero-Rhodes, M. A.; Childs, R. A.; Kiso, M.; Komba, S.; Le Narvor, C.; Warren, J.; Otto, D.; Crocker, P. R.; Feizi, T., Carbohydrate Microarrays Reveal Sulphation as A Modulator of Siglec Binding. Biochem. Biophys. Res. Commun. 2006, 344, 1141-1146.
135.Bochner, B. S.; Alvarez, R. A.; Mehta, P.; Bovin, N. V.; Blixt, O.; White, J. R.; Schnaar, R. L., Glycan Array Screening Reveals A Candidate Ligand for Siglec-8. J. Biol. Chem. 2005, 280, 4307-4312.
136.Rillahan, C. D.; Schwartz, E.; McBride, R.; Fokin, V. V.; Paulson, J. C., Click and Pick: Identification of Sialoside Analogues for Siglec‐Based Cell Targeting. Angew. Chem. Int. Ed. 2012, 51, 11014-11018.
137.Rillahan, C. D.; Paulson, J. C., Glycan Microarrays for Decoding The Glycome. Annu. Rev. Biochem 2011, 80, 797-823.
138.Rillahan, C. D.; Schwartz, E.; Rademacher, C.; McBride, R.; Rangarajan, J.; Fokin, V. V.; Paulson, J. C., On-Chip Synthesis and Screening of A Sialoside Library Yields A High Affinity Ligand for Siglec-7. ACS Chem. Biol. 2013, 8, 1417-1422.
139.Macauley, M. S.; Crocker, P. R.; Paulson, J. C., Siglec-Mediated Regulation of Immune Cell Function in Disease. Nat. Rev. Immunol. 2014, 14, 653-666.
140.Yamaji, T.; Teranishi, T.; Alphey, M. S.; Crocker, P. R.; Hashimoto, Y., A Small Region of The Natural Killer Cell Receptor, Siglec-7, Is Responsible for Its Preferred Binding to α2,8-Disialyl and Branched α2,6-Sialyl Residues: A Comparison with Siglec-9. J. Biol. Chem. 2002, 277, 6324-6332.
141.Avril, T.; North, S. J.; Haslam, S. M.; Willison, H. J.; Crocker, P. R., Probing the cis Interactions of the Inhibitory Receptor Siglec-7 with α2,8-Disialylated Ligands on Natural Killer Cells and Other Leukocytes Using Glycan-Specific Antibodies and by Analysis of α2,8-Sialyltransferase Gene Expression. J. Leukocyte Biol. 2006, 80, 787-796.
142.Godschalk, P. C. R.; Kuijf, M. L.; Li, J.; St. Michael, F.; Ang, C. W.; Jacobs, B. C.; Karwaski, M.-F.; Brochu, D.; Moterassed, A.; Endtz, H. P.; van Belkum, A.; Gilbert, M., Structural Characterization of Campylobacter jejuni Lipooligosaccharide Outer Cores Associated with Guillain-Barré and Miller Fisher Syndromes. Infect. Immun. 2007, 75, 1245-1254.
143.Heikema, A. P.; Jacobs, B. C.; Horst-Kreft, D.; Huizinga, R.; Kuijf, M. L.; Endtz, H. P.; Samsom, J. N.; van Wamel, W. J. B., Siglec-7 Specifically Recognizes Campylobacter jejuni Strains Associated with Oculomotor Weakness in Guillain-Barre Syndrome and Miller Fisher Syndrome. Clin. Microbiol. Infect. 19, E106-E112.
144.Yu, H.; Chen, X., Aldolase-Catalyzed Synthesis of β-D-Galp-(1→9)-D-KDN-A Novel Acceptor for Sialyltransferases. J. Am. Chem. Soc. 2006, 8, 2393–2396.
145.Meng, X.; Yao, W.; Cheng, J.; Zhang, X.; Jin, L.; Yu, H.; Chen, X.; Wang, F.; Cao, H., Regioselective Chemoenzymatic Synthesis of Ganglioside Disialyl Tetrasaccharide Epitopes. J. Am. Chem. Soc. 2014, 136, 5205-5208.
146.Pudelko, M.; Lindgren, A.; Tengel, T.; Reis, C. A.; Elofsson, M.; Kihlberg, J., Formation of Lactones from Sialylated MUC1 Glycopeptides. Org. Biomol. Chem. 2006, 4, 713-720.