簡易檢索 / 詳目顯示

研究生: 林哲葦
Lin, Che-Wei
論文名稱: Characterization of a molecular probe for dopamine detection on cell membrane
在細胞膜上表現多巴胺偵測分子
指導教授: 桑自剛
Sang, Tzu-Kang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 45
中文關鍵詞: 多巴胺多巴胺釋放多巴胺偵測帕金森氏症活體偵測
外文關鍵詞: dopamine, dopamine detecting, Parkinson's disease, in vivo, dopamine release
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dopaminergic neurons of the midbrain are the main source of dopamine (DA) in the mammalian central nervous system. As a neurotransmitter DA were released by dopaminergic neurons to activate or modulate downstream neuron. DA circuits in brain which composed by lots dopaminergic neurons involved in many psychological and physiological functions of brain such as cognition, reward prediction, sense of pleasure and voluntary movement. On the other way, dysfunction of dopaminergic neurons may result in several neurodegenerative disorders like Parkinson’s disease. Previous studies suggested that lose of dopaminergic neurons in the substantia nigra is responsible for dysfunction in movement in patients of Parkinson’s disease. We had developed an DA sensor and showed the sensor can detect dopamine in vitro. In this thesis we expressed the probe on mammal cell membrane to determine its activity and level of sensitivity upon DA treatment. Through this work such kind of probe may be expressed in neuron and observe the activation of DA circuits when applying different stimulations.


    多巴胺是神經系統中一類重要的神經傳導物質,多巴胺生成細胞藉由釋放多巴胺來傳遞神經訊號或調節下游的神經細胞。在神經系統中多個多巴胺生成細胞共同組成多巴胺迴路,調節多類神經在生理和心理上的作用諸如辨識物體、預期獎勵、產生愉悅感、自主性運動…等等。此外,神經系統中的多巴胺生成細胞也和一些神經退化性疾病相關,像是帕金森氏症。大量的研究結果指出,在病人身上發生的多巴胺生成細胞的缺失,使大腦中調控肢體運動的部分無法接收到足夠的多巴胺刺激,因此出現帕金森氏症的相關病症。多巴胺在神經系統運作機轉中扮演如此重要角色,因此,許多研究團隊都致力於開發新的多巴胺偵測方式試圖在活體中觀測多巴胺和神經系統運作的相關性。我們利用基因工程的方式發展出多巴胺偵測探針,並證明此多巴胺偵測探針在多巴胺存在的情況下可偵測多巴胺存在。更進一步,我們將此多巴胺偵測探針表現在細胞膜外側,並測試此探針的作用能力。我們希望未來能將這探針用以觀測特定神經元運作時多巴胺釋放的作用及功能。並可進一步分析多巴胺調控與神經退化疾病之關連性。

    Table of Contents 中文摘要 ………………………………………………………………………… I Abstract ………………………………………………………………………….. II Introduction ……………………………………………………………………… 1 Materials and Methods ………………………………………………………….. 6 Plasmids and constructs …………………………………………………….… 6 Cell culture ……………………………………………………………………. 7 Protein expression in PC12 cells and HEK293 cells ………………………..... 7 Protein extraction …………………………………………………………….... 8 Western blot ……………………………………………………………………. 9 Immunostaining for confocal microscopic imaging …………………………… 9 Flow cytometry measurement ………………………………………..…. 10 Probe activity measurement ………………………………………….... 11 Results …………………………………………………………………………….. 12 Construct design of membrane dopamine sensor ……………………………… 12 Expressing MDS on mammalian cell line HEK 293 ………………………….. 13 Dopamine detecting ability of MDS ……………………….…………….…. 15 Probe activity measurement ……….………………………….…………. 16 Discussion …………………………………………………………………………. 19 Neurotransmitters detecting on cell membrane ………………..……………….. 19 MDS expression in cell …………………………..……..……………….. 20 MDS activity and dopamine sensing ………………………….……….………. 21 MDS and other dopamine detecting methods ……………………………….. 23 Future works for the present study ……………………………….…………. 24 Figures ………………………………………………………………..…………… 26 References ………………………….……………………………………………… 43

    References
    1. Binda, C., A. Mattevi, et al. (2002). "Structure-Function Relationships in
    Flavoenzyme-dependent Amine Oxidations." Journal of Biological Chemistry
    277(27): 23973-23976.
    2.Bortolato, M., K. Chen, et al. (2008). "Monoamine oxidase inactivation: From
    pathophysiology to therapeutics." Advanced Drug Delivery Reviews
    60(13-14): 1527-1533.
    3.Carelli, R. M. (2004). "Nucleus accumbens cell firing and rapid dopamine signaling
    during goal-directed behaviors in rats." Neuropharmacology 47(Supplement 1):
    180-189.
    4.Dawson, T. M., H. S. Ko, et al. (2010). "Genetic Animal Models of Parkinson's
    Disease." Neuron 66(5): 646-661.
    5.Doya, K. (2008). "Modulators of decision making." Nat Neurosci 11(4): 410-416.
    6.Geha, R. M., K. Chen, et al. (2002). "Analysis of Conserved Active Site Residues in
    Monoamine Oxidase A and B and Their Three-dimensional Molecular
    Modeling." Journal of Biological Chemistry 277(19): 17209-17216.
    7.Gubernator, N. G., H. Zhang, et al. (2009). "Fluorescent False Neurotransmitters
    Visualize Dopamine Release from Individual Presynaptic Terminals." Science
    324(5933): 1441-1444.
    8.Hjemdahl, P. (1984). "Catecholamine measurements by high-performance liquid
    chromatography." Am J Physiol Endocrinol Metab 247(1): E13-20.
    9.Kumakura, Y. and P. Cumming (2009). "PET Studies of Cerebral Levodopa
    Metabolism: A Review of Clinical Findings and Modeling Approaches." The
    Neuroscientist 15(6): 635-650.
    10Nandigama, R. K. and D. E. Edmondson (2000). "Influence of FAD Structure on Its
    Binding and Activity with the C406A Mutant of Recombinant Human Liver
    44
    Monoamine Oxidase A." Journal of Biological Chemistry 275(27):
    20527-20532.
    11.Newton-Vinson, P., F. Hubalek, et al. (2000). "High-Level Expression of Human
    Liver Monoamine Oxidase B in Pichia pastoris." Protein Expression and
    Purification 20(2): 334-345.
    12.Okumoto, S., L. L. Looger, et al. (2005). "Detection of glutamate release from
    neurons by genetically encoded surface-displayed FRET nanosensors."
    Proceedings of the National Academy of Sciences of the United States of
    America 102(24): 8740-8745.
    13.Patel, N. H., N. S. Vyas, et al. (2010). "Positron Emission Tomography in
    Schizophrenia: A New Perspective." J Nucl Med 51(4): 511-520.
    14.Peaston, R. T. and C. Weinkove (2004). "Measurement of catecholamines and their
    metabolites." Ann Clin Biochem 41(1): 17-38.
    15.Quik, M., L. Z. Huang, et al. (2009). "Multiple roles for nicotine in Parkinson's
    disease." Biochemical Pharmacology 78(7): 677-685.
    16.Rebrin, I., R. M. Geha, et al. (2001). "Effects of Carboxyl-terminal Truncations on
    the Activity and Solubility of Human Monoamine Oxidase B." Journal of
    Biological Chemistry 276(31): 29499-29506.
    17.Robinson, D. L., B. J. Venton, et al. (2003). "Detecting Subsecond Dopamine
    Release with Fast-Scan Cyclic Voltammetry in Vivo." Clin Chem 49(10):
    1763-1773.
    18.Sara, S. J. (2009). "The locus coeruleus and noradrenergic modulation of
    cognition." Nat Rev Neurosci 10(3): 211-223.
    19.Satoh, T., S. Nakai, et al. (2003). "Correlated Coding of Motivation and Outcome
    of Decision by Dopamine Neurons." J. Neurosci. 23(30): 9913-9923.
    20.Shapiro, M. G., G. G. Westmeyer, et al. (2010). "Directed evolution of a magnetic
    resonance imaging contrast agent for noninvasive imaging of dopamine." Nat
    Biotech 28(3): 264-270.
    45
    21.Tu, B. P., S. C. Ho-Schleyer, et al. (2000). "Biochemical Basis of Oxidative Protein
    Folding in the Endoplasmic Reticulum." Science 290(5496): 1571-1574.
    22.Tu, B. P. and J. S. Weissman (2002). "The FAD- and O2-Dependent Reaction
    Cycle of Ero1-Mediated Oxidative Protein Folding in the Endoplasmic
    Reticulum." Molecular Cell 10(5): 983-994.
    23.Varsanyi, M., A. Szarka, et al. (2004). "FAD Transport and FAD-dependent Protein
    Thiol Oxidation in Rat Liver Microsomes." Journal of Biological Chemistry
    279(5): 3370-3374.
    24.Vickrey, T. L., B. Condron, et al. (2009). "Detection of Endogenous Dopamine
    Changes in Drosophila melanogaster Using Fast-Scan Cyclic Voltammetry."
    Analytical Chemistry 81(22): 9306-9313.
    25.Zeiss, C. J. (2005). "Neuroanatomical Phenotyping in the Mouse: The
    Dopaminergic System." Veterinary Pathology Online 42(6): 753-773.
    26.Zhou, B. P., B. Wu, et al. (1998). "Characterization of a Highly Conserved
    FAD-binding Site in Human Monoamine Oxidase B." Journal of Biological
    Chemistry 273(24): 14862-14868.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE