研究生: |
潘志□ Pan, Chih-Heng |
---|---|
論文名稱: |
應用於可攜式電子鼻之類比低功耗多層感知器類神經網路 An Analog Multilayer Perceptron Circuit with On-chip Learning for a Portable Electronic Nose |
指導教授: |
鄭桂忠
Tang, Kea-Tiong |
口試委員: |
陳新
黃聖傑 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 多層感知器類神經網路 、倒傳遞 、類比超大型積體電路 、可攜式電子鼻 |
外文關鍵詞: | Multilayer perceptron neural network, Back propagation, Analog VLSI, Portable electronic nose |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子鼻的發展已有一段長遠的歷史,但大部分電子鼻體積可觀;且目前在電子鼻後端的辨識系統中,大部分是將訊號以軟體分析或微處理器等方式進行運算,相當耗能;另外,介面電路取得的類比訊號需經過類比數位轉換器將訊號轉換成數位訊號才能讓軟體或微處理器運算,也消耗了多餘的功率。因此用類比電路製作倒傳遞多層感知器類神經網路,以此電路作為電子鼻系統的辨識與分類工具;透過晶片整合縮小體積,並直接以類比電路運算降低功率需求,實現適於可攜式電子鼻系統的類比倒傳遞多層感知器類神經網路,將可大幅開拓電子鼻的應用發展領域。
本研究以三種不同的氣味作為多層感知器類神經網路的學習目標,採用4-4-1的網路結構,即輸入層與隱藏層各包含四個神經元,輸出層僅用一個神經元;一般輸出層神經元數目取決於目標輸出值的個數,然而就降低功率消耗以及縮小面積的電路設計觀點來說,越多的神經元意味著需要用更多的突觸連接不同層之間的神經元;因此在輸出層僅用一個神經元做為網路輸出層的運算單元,以不同的數值作為不同的輸出目標值,藉以縮小電路面積與功率消耗。然而以電路實現此結構卻會受限於狹窄的輸出變動範圍,所以在輸出層神經元之後加入兩個比較器,藉比較器的輸出結果判斷氣味種類。電路上大量採用操作於次臨界區區並達到飽和的電晶體,其電壓-電流為指數關係的概念進行設計,包含乘法器、活化函數與其近似微分等。活化函數以輸入端電晶體操作於次臨界區並達到飽和的基本差動對,產生具有雙曲正切函數特性的輸出;而其微分則利用導函數定義以及函式的自變數-應變數觀念,設計一個只需另加一組基本差動對與一組電流鏡結合活化函數電路,實現活化函數與其近似微分之電路。
本研究以TSMC 0.18 μm 1P6M CMOS製程實現倒傳遞多層感知器類神經網路的類比電路,晶片模擬與量測結果顯示網路經過訓練後具學習、容錯與辨識能力,其辨識率可達98.33%。晶片面積只有1.353 × 1.353 mm2且功率消耗僅0.423 mW,應用於可攜式裝置是項優勢。
This thesis presents an analog multilayer perceptron (MLP) neural network circuit with on-chip back propagation learning. This low power and small area network was proposed to implement as a classifier, which is intended to be used in a portable electronic nose (E-nose).
The proposed MLP architecture was composed of four signal inputs, four hidden neurons (HN), one output neuron (ON). Twenty hidden synapses (HS) and five output synapses (OS) were used to connect neurons between different layers. Two comparators were utilized to clarify further the classification results. This simple structure allowed the circuit to have a smaller area and less power consumption. Both HS and OS were basically composed of two multipliers (Chible multiplier, CM. and Gilbert multiplier, GM), one weight unit W, and a back propagation multiplier (BPM) in OS was required to generate the back propagated error term. The Chible multiplier was chosen for CM and BPM because of its favorable linearity and wide operation range related to weights. A backward multiplier GM was adopted from the Gilbert multiplier to generate weight adaption value. The weight unit was a temporal signal storage device exhibiting the adaptation of weight value, and was implemented by MOSCap because of its smaller area. HN and ON consisted of an activation function circuit, its approximate derivative circuit, and a Delta block that calculated the error terms. The realization of the activation function simply involved a differential pair with input transistors operating in weak inversion and saturation region. The approximately derivative of the activation function was realized by implementing another differential pair with the referenced input node slightly different from that of the original one.
To test the analog MLP, six hundred odor samples of three kinds of fruits were used. Three hundred samples were used to train the system; the MLP system learned to follow the target output successfully during the training procedure. After training, the other three hundred fruit odor samples were fed into the system to perform classification.
The circuit was fabricated using TSMC 0.18 μm 1P6M CMOS process with 1.8 V supply voltage. The area of this chip was 1.353 □ 1.353 mm2 and the power consumption was 0.423 mW. Chip measurements showed that the proposed analog MLP circuit could be successively trained to identify three fruit odors with 98.33% accuracy.
[1] J. W. Gardner, H. W. Shin, E. L. Hines, and C. S. Dow, “An electronic nose system for monitoring the quality of potable water,”, Sensors and Actuators B, vol. 69, pp. 336-341 , 2000.
[2] H. W. Shin, E. Llobet, J. W. Gardner, E. L. Hines, and C. S. Dow, “Classification of the strain and growth phase of cyanobacteria in potable water using an electronic nose system”, in IEE Proc. of Science Measurement and Technology, vol. 147, pp. 158-164, 2000.
[3] J. W. Gardner, M Craven, C. Dow, and E. L. Hines, “The prediction of bacteria type and culture growth phase by an electronic nose with a multi-layer perception network”, Measurement Science and Technology, vol. 9, pp. 120-127, 1998.
[4] J. W. Gardner, E. L. Hines, F. Molinier, P. N. Bartlett, and T. T. Mottram, “Prediction of health of dairy cattle from breath samples using neural network with parametric model of dynamic response of array of semiconducting gas sensors”, in IEE Proc. of Science Measurement and Technology, vol. 146, pp. 102-106, 1999.
[5] J. W. Gardner, H. W. Shin, and E. L. Hines, “An electronic nose system to diagnose illness”, Sensors and Actuators B, vol. 70, pp. 19-24, 2000.
[6] Y. J. Lin, H. R. Guo, Y. H. Chang, M. T. Kao, H. H. Wang, and R. I. Hong, “Application of the Electronic Nose for Uremia Diagnosis”, Sensors and Actuators B, vol. 76, pp. 177-180, 2001.
[7] R. W. Moncrieff, “An instrument for measuring and classifying odours”, J. Appl. Physiol., vol. 16, pp. 742, 1961.
[8] W. F. Wilkens and A. D. Hatman, “An electronic analog for the olfactory processes”, Ann. NY Acad. Sci., vol. 116, pp. 608, 1964.
[9] T. M. Buck, F. G. Allen, and M. Dalton, “Detection of chemical species by surface effects on metals and semiconductors”, Surface Effects in Detection, Spartan Books Inc., USA, 1965.
[10] K. Persaud and G. H. Dodd, “Analysis of discrimination mechanisms of the mammalian olfactory system using a model nose”, Nature, vol. 299, pp. 352-355, 1982.
[11] R. R. Reed, “Signaling pathways in odorant detection”, Neuron, Vol. 8, p.p. 205-209, 1992.
[12] D. Lancet and N. Ben-Arie, “Olfactory receptors”, Curr. Biol. Vol. 3, pp. 668–674, 1993.
[13] M. S. Freund, N. S. Lewis, “A chemically diverse conducting polymer-based electronic nose”, in Proc. of Natl. Acad. Sci. U.S.A. Vol. 92, 2652-2656, 1995.
[14] T. Nakamoto, A. Fukuda, T. Moriizumi, ”Perfume and flavour identification by odour-sensing system using quartz-resonator sensor array and neural-network pattern recognition”, Sensors and Actuators B, Vol. 10, pp. 85-90, 1993.
[15] Z. Haddi, A. Amari, N. E. Bari, E. Llobet, B. Bouchikhi, “A portable electronic system for the identification of cannabis-based drugs”, Sensors and Actuators B, vol. 155, pp. 456-463, 2011.
[16] B. Tudu, A. Metla, B. Das, N. Bhattacharyya, A. Jana, D. Ghosh, and R. Bandyopadhyay, ”Towards versatile electronic nose pattern classifier for black tea quality evaluation: an incremental fuzzy approach”, IEEE Trans. On Instrumentation and Measurement, Vol. 58, No. 9, pp. 3069-3078, 2009.
[17] J. Brezmes, P. Cabré, S. Rojo, E. Llobet, X. Vilanova, and X. Correig, ”Discrimination between different samples of olive oil using variable selection techniques and modified Fuzzy ARTMAP neural networks”, IEEE J. Sensors, vol. 5, NO. 3, pp. 463-470, 2005.
[18] J. W. Gardner, P. N. Bartlett, Electronic Nose. Principles and Applications; Oxford University Press: Oxford, UK, pp. 221-245, 1999.
[19] R. Dutta, E. L. Hines, J. W. Gardner, and P. Boilot, “Bacteria classification using Cyranose 320 electronic nose”, Biomed. Eng. Online, vol. 1, pp. 1-7, 2002.
[20] D. S. Lee, D. D. Lee, S. W. Ban, M. Lee, and Y. T. Kim, ”SnO2 gas sensing array for combustible and explosive gas leakage recognition”, IEEE J. Sensors, Vol. 2, NO. 3, pp. 140-149, 2002.
[21] S. S. Chowdhury, B. Tudu, R. Bandyopadhyay, N. Bhattacharyya, “Portable electronic nose system for aroma classification of black tea”, IEEE Region 10 Colloquium and the Third ICIIS, NO. 305, 2008.
[22] L. C. Wang, K. T. Tang, C. T. Kuo, C. L. Ho, S. R. Lin, Y. Sung, C. P. Chang, “A portable electronic nose system with chemiresistor sensors to detect and distinguish chemical warfare agents”, in Proc. of the 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 302-306, 2009.
[23] H. K. Hong, C. H. Kwon, S. R. Kim, D. H. Yun, K. Lee, Y. K. Sung, “Portable electronic nose system with gas sensor array and artificial neural network”, Sensors and Actuators B, vol 66, pp. 49-52, 2000.
[24] P. Boilot, E. L. Hines, J. W. Gardner, R. Pitt, S. John, J. Mitchell, and D. W. Morgan, “Classification of bacateria responsible for ENT and eye infections using the Cytanose system”, IEEE J. Sensors, vol. 2, no. 3, pp. 247-253, 2002.
[25] E. Schaller, J. O. Bosset, F. Esher, “Electronic noses and their application to food”, Lebensm.-Wiss. Ul.-Technol., vol. 31, pp. 305-316, 1998.
[26] A. D. Wilson, and M. Baietto, “Applications and advances in electronic-nose technologies”, Sensors, vol. 9, pp. 5099-5148, 2009.
[27]葉怡成, 類神經網路模式應用與實作, 2006.
[28] M. Pardo, B. C. Sisk, G. Sberveglieri, N. S. Lewis, “Comparison of Fisher’s linear discriminant to multilayer perceptron networks in the classification of vapors using sensor array data”, Sensors and Actuators B, vol. 115, pp. 647-655, 2006.
[29] V. Kakkar, “Comparative Study on Analog and Digital Neural Networks”, Internal Journal of Computer Science and Network Security, vol. 9, No. 7, pp. 14-21, 2009.
[30] F. Rosenblatt, “The perceptron: A probabilistic Model for information storage and organization in the brain”, Physical Review, vol. 65, No. 6, pp. 386-408, 1958.
[31] M. Minsky, and S. Papert, Perceptrons: An introduction to computational geometry, MIT Press, 1969.
[32] D. J. Rumelhart and J. L. McClelland, “On learning the past tenses of English verbs”, Parallel Destributed Processing, vol. 2, pp. 216-271, MIT Press, 1986.
[33] T. Morrie, and Y. Amemiya, “An all-analog expandable neural network LSI with on-chip back propagation learning”, IEEE J. Solid-State Circuits, vol. 29, pp. 1086-1093, 1994.
[34] C. Lu and B. Shi, “Circuit realization of a programmable neuron transfer function and its derivative”, in Proc.of IEEE-INNS-ENNS Int. Joint Conf. Neural Networks, vol.4, pp.47–50, 2000.
[35] J. B. Lont, and W. Guggenbuhl, “Analog CMOS implementation of a multilayer perceptron with nonlinear synapses”, IEEE Trans. On Neural Networks, vol. 3, NO. 3, pp. 457-465, 1992.
[36] L. Gatet, H. Tap-B., and M. Lescure, “Analog neural network implementation for a real-time surface classification application”, IEEE Sensors J., vol. 8, No. 8, pp.1413-1421, 2008.
[37] E. L. Hines, J. W. Gardner, W. Fung, and A. Fekadu, “Improved rate of convergence in a MLP based electronic nose”, presented at 2nd. Irish Neural Network Conf., Belfast, U.K., 1992.
[38] 張斐章, 張麗秋, 類神經網路, 2007.
[39] D. E. Rumelhart, and J. L. McClelland. Parallel Distributed Processing. Cambridge: MIT Press, 1986.
[40] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of the Neural Computation. Addison-Wesley Publishing Company, 1991.
[41] A. Cichocki and R. Unbehauen. Neural Networks for Optimization and Signal Processing. John Wiley & Sons, 1993.
[42] D. Anguita, and M. Valle, “Perspectives on dedicated hardware implementations”, in Proc. of the European Symposium on Artificial Neural Networks, pp. 45–55, 2001.
[43] A. R. Omondi, “Neurocomputers: A dead end?”, International Journal of Neural Systems, vol. 10, pp. 475–481, 2000.
[44] J. J. Hopfield, and D. W. Tank, “Computing with neural circuits: A model”, Science, Vol. 233, pp. 625–633, 1986.
[45] Y. Tsividis, and S. Satyanarayana, “Analog circuits for variable synapse electronic neural networks”, Electronic Letters, Vol. 23, pp. 1313–1314, 1987.
[46] C. Mead, Analog VLSI and Neural Systems. Reading MA: Addison Wesley, 1989.
[47] E. A. Vittoz, “Future of the analog in the VLSI environment”, in Proc. of ISCAS, pp. 1372–1375, 1990.
[48] C. Lu, B. Shi, and L. Chen, “An on-chip BP learning Neural network with ideal neuron characteristics and learning rate adaption”, Analog Integrated Circuits and Signal Processing, vol. 31, pp. 55-62, 2002.
[49] H. Chible, “Analog circuit for synapse neural networks VLSI implementation”, Electronics, Circuits and Systems, vol. 2, pp. 1004-1007, 2000.
[50] H. Chible, and Ahmad Ghandour, “Different mathematical relations with CMOS VLSI circuits”, J. Lebanese Science, vol. 8, No. 1, pp.75-91, 2007.
[51] H. Chible, “OTANPS synapse linear relation multiplier circuit”, J. Lebanese Science, vol. 9, No. 2, pp.91-103, 2008.
[52] D. Coue, and G. Wilson, “A four quadrant subthreshold mode multiplier for analog neural-network applications”, IEEE Trans. on Neural Networks, Vol. 7, NO. 5, 1996.
[53] M. Milev and M. Hrstov. “Analog implementation of ANN with inherent quadratic nonlinearity of the synapses”, IEEE Trans. on Neural Networks, Vol. 14, NO. 5, 2003
[54] C. R. Manuel, and L. Serrano, “Novel minimum-size activation function and its derivative”, IEEE Trans. on Circuits and Systems, Vol. 56, No.4, 2009.
[55] Y. Horio, K. Aihara, and O. Yamamoto, “Neuron-Synapse IC Chip-Set for Large-Scale Chaotic Neural Networks”, IEEE Trans. on Neural Networks, vol. 14, NO. 5, pp.1393-1403, 2003.
[56] K. T. Tang, H. Y. Hsieh, C. H. Pan, J. M. Shyu, and Y. S. Lin, “A portable electronic nose system that can detect fruity odors”, IEEE International Symposium on Circuits and Systems, pp. 780-780, 2009.