研究生: |
張耀晟 Chang, Yao-Cheng |
---|---|
論文名稱: |
超聲振動輔助化學機械拋光之研究 Study on Ultrasonic Vibration Assisted Chemical Mechanical Polishing |
指導教授: |
左培倫
Tso, Pei-Lum |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 化學機械拋光 、平坦化 、超聲振動輔助加工 、材料移除率 、表面粗糙度 |
外文關鍵詞: | Chemical Mechanical Polishing, Planarization, Ultrasonic Vibration Assisted Machining, Material Removal Rate, Surface Roughness |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化學機械拋光是半導體製程中達到全域平坦化最有效之方法,隨著晶圓大尺寸及小線寬的發展趨勢,其相關技術有提升與改善之必要性。在製程上,高材料移除率與高拋光品質一直是我們追求的目標,但實際上卻不可兼得。因此本論文中提出一改善方法,將超聲振動輔助加工技術與化學機械拋光相整合,藉由超聲振動的特性,以期達到增進製程效能之目標。本文中介紹超聲振動產生的基本原理,並提出超聲振動在拋光界面所產生之效應及相關理論,透過實驗驗證上述理論。結果顯示:超聲輔助化學機械拋光對試片之材料移除率以及表面品質皆有顯著的改善;在一定參數設定下,最適合之實驗參數:拋光壓力為4psi、平台轉速為25rpm、載具轉速為20rpm、振動振幅為14μm。其平均材料移除率可以提高24.3%,而其平均表面粗糙度由0.0508μm下降為0.0316μm。
Chemical Mechanical Polishing is the most effective method in planarization of semiconductor industry. Because of the continuous improvement of the wafer size and line width, the technology of CMP process must be promoted and improved. We work hard to achieve high material removal rate and high surface quality all the time, but it seems too difficult to achieve both aims in reality. In this paper, we suggested an innovative method which integrated ultrasonic vibration assisted machining with CMP, and supposed it would promote the efficiency and quality of manufacturing via the character of ultrasonic vibration.
This research illustrated the basic principle of ultrasonic vibration and the effects caused by ultrasonic vibration in the interface between wafer and pad, then, we proved the above hypothesis according to the results. However, the result indicated that the MRR and surface roughness had obvious improvement such as the average MRR increased 24.3% and the average Ra reduced from 0.0508μm to 0.0316μm by using ultrasonic vibration assisted CMP (UCMP). Besides, we also found the optimum parameters by DOE method which the pressure was 4psi, the rotational speed of platform was 25rpm, the rotational speed of carrier was 20rpm, and the amplitude was 14μm.
[1] 土肥俊郎等箸,王建榮,林必窈,林慶福編譯,“半導體平坦化CMP技術”,全華科技圖書股份有限公司,2000年6月。
[2] 左培倫,黃志龍,“化學機械拋光技術發展趨勢”,機械工業雜誌,第206期,1996年5月,pp.131-145。
[3] 林家全,“化學機械研磨之面向上機台雙轉速研磨設計與參數最佳化”,台灣大學電機工程系碩士論文,2004年。
[4] 陳麗梅、王朝仁,“化學機械研磨技術之概論”,材料會訊,1999年。
[5] Preston, F. W., ‘‘The Theory and Design of Plate Glass Polishing Machines’’, J. Soc. Glass Technol., 1927, 11, pp.214.
[6] 何碩洋,“化學機械拋光中拋光墊修整參數影響之研究”,清華大學動力機械工程系碩士論文,2000年。
[7] T. B. Thoe, D. K. Aspinwall, M. L. H. Wise, ‘‘Review on Ultrasonic Machining’’,Int. J. Mach. Tools Manufact, 1998, Vol. 38, No. 4, pp. 239-255.
[8] 張云電,“超聲加工及其應用”,國防工業出版社,1995年9月。
[9] 吳朗,“電子陶瓷-壓電”,全欣資訊圖書股份有限公司,1994年12月初版。
[10]許坤明,“超音波熔接與旋轉熔接結合裝置”,虎尾科技大學機械與電腦輔助工程系產學合作計畫,2007年。
[11]楊晨暉,“雙層壓電式超音波馬達之研究”,台灣大學機械工程所碩士論文,2005年。
[12]Chandra Nath, M. Rahman, S. S. K. Andrew, ‘‘A Study on Ultrasonic Vibration Cutting of Low Alloy Steel’’, Journal of Materials Processing Technology, 2007, 192-193, pp. 159-165.
[13]Zhao, B., Shi, F. G., ‘‘Chemical Mechanical Polishing: Threshold Pressure and Mechanism’’, Electrochem. Solid-State Lett., 1999, 2(3), pp. 145-147.
[14]L. M. Cook, “Chemical process in glass polishing”, Journal of Non-Crysalt. Solids, 1990, Vol. 120, pp. 152-164.
[15]Jeng. Y. R., Huang P. Y., ‘‘A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing’’, Journal of Tribology, 2005, Vol. 127, pp. 190-197.
[16]S. R. Runnels, “Feature-Scale Fluid-Based Erosion Modeling for Chemical-Mechanical Polishing”, Journal of Electrochemical Society, 1994, Vol. 141, pp. 1900-1904.
[17]Tsai H. J., Jeng. Y. R., Huang P. Y., ‘‘Elasto-Partial Hydrodynamic Contact Model for Chemical Mechanical Polishing’’, Journal of The Electrochemical Society, 2006, 153(12), pp. 1072-1077.
[18]A. K. Sikder, Frank Giglio, John Wood, Ashok Kumar, Mark Anthony, ‘‘Optimization of Tribological Properties of Silicon Dioxide During the Chemical Mechanical Planarization Process’’, Journal of Electronic Materials, 2001, Vol. 30.
[19]Park S. W., Kim C. B., Seo Y. J., “Design of Experimental Optimization for ULSI CMP Process Applications”, Journal of Microelectronic Engineering, 2003, Vol. 66, pp. 488-495.
[20]許溢适,“壓電陶瓷新技術”,文笙書局,1996年4月再版。
[21]J. Sung, Y. L. Pai, “CMP Pad Dresser: A Diamond Grid Solution”, Advances in Abrasive Technology III, The Society of Grinding Engineers, 2000, pp.189-196.
[22] Nam-Hoon Kim, Yong-Jin Seo, Woo-Sun Lee, “Temperature effects of pad conditioning process on oxide CMP: Polishing pad, slurry characteristics, and surface reactions”, Microelectronic Engineering, 83, 2006, pp. 362-370.
[23]S. R. Runnels, L. M. Eyman, “Tribology Analysis of Chemical Mechanical Polishing.”, Journal of Electrochemical Society, 1994, Vol. 141, No. 6, pp. 1698-1700.
[24]蔡宏榮,邱順榮,“化學機械研磨界面剪力之實驗探討”,吳鳳學報第14期。
[25] T. K. Yu, C. C. Yu, M. Orlowski, “Combined Asperity Content and Fluid Flow Model for Chemical-Mechanical Polishing.”, Proceedings of IEEE International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits, 1994, pp. 29-34.
[26]C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, “Modeling of the Wear. ”, 1996.
[27]O. G. Chekina, and L. M. Keer, “Wear-Contact Problems and Modeling of Chemical-Mechanical Polishing.”, Journal of Electrochemical Society, 1998, Vol. 145, pp. 2100-2106.
[28]陳沛樺,“化學機械拋光中先進鑽石碟修整石墨拋光墊之修整與拋光效能研究”,清華大學動力機械工程系碩士論文,2009年。
[29]謝會東,王曉青,沈光球,“晶體的超精密加工”,人工晶體學報,2004,pp.1035-1040。