研究生: |
陳柏榮 Bo-Jung Chen |
---|---|
論文名稱: |
以飛行時間式二次離子質譜術研究頭髮、有機發光二極體及金屬氧化物奈米多層膜 ToF-SIMS study of hair, OLEDs and metal oxide LbL thin film |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 飛行時間式二次離子質譜儀 、有機發光二極体 、頭髮 、多層膜 |
外文關鍵詞: | ToF-SIMS, OLEDs, Hair, LbL |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛行時間式二次離子質譜術(ToF-SIMS)為一可分析固體表面化學資訊的技術。其質量解析度可達10000,且靈敏度可達ppma至ppba等級。化學影像的橫向解析度可藉由鎵離子槍而達到100nm。飛行時間式二次離子質譜術可應用在半導體、微電子電路、奈米科技、高分子化學、生命科學、環境分析及藥物化學。
在第二章中,單根頭髮以縱向剖面的樣品準備形式進入ToF-SIMS分析。結果看出外來物如染髮劑的分子離子的質譜訊號,且其離子影像分佈可看出染髮劑已侵入至皮質層。
在第三章中,我們以飛行時間式二次離子質譜術分析含有8-羥基喹啉鋁 (Alq3)和NPB在氧化銦錫玻璃(ITO glass)的有機發光二極體元件。初期結果發現有經熱處理之有機發光二極體元件會在NPB/ITO界面層產生一緩衝層。另外,NPB向ITO擴散的情形也被觀察到。
在第四章中,二氧化矽(SiO2)和三氧化二鋁(Ai2O3)的全奈米粒子多層膜被製造出來並由二次離子質譜術觀測其化學組成和成長機制,我們求出表面元素的均勻度,並發現其長膜機制和分子模擬結果一致。
在第五章中,我們使用一特別的材料,二氧化鈦(TiO2)奈米粒子做為基層,再反覆將二氧化矽和三氧化二鋁鍍在其上,再針對二氧化鈦的訊號來幫助我們了解長膜機制,發現金屬奈米多層膜在鍍膜過程中會有奈米粒子溶出及回鍍的現象。此一現象已能解釋為何奈米多層膜為一混雜,而非均勻的層狀結構。
Time-of-flight secondary ion mass spectrometer (ToF-SIMS) is an analytical technique that can be used to characterize the surface and near surface region of solids and the surface of some liquids. ToF-SIMS could distingulish analytes with mass resolution different by 10000 at ppma to ppba sensitivity. Top monolayer atomic or molecular information could be determined by adjusting primary ion current density. Chemical images with lateral resolution 100 nm or less can be obtained by using Ga+ gun. ToF-SIMS extend its applicability to broad fields such as microelectronics, nano-technology, polymer science, life science technology, environmental analysis and medical technology. ToF-SIMS could simultaneously provide critical chemical information and is a multi functional state-of-the art instrument.
In chapter 2, a single hair sample preparation protocol modified from reported method was developed and used to prepare longitudinally sectioned hair for ToF-SIMS analysis. Preliminary results demonstrate that ToF-SIMS is capable of providing molecular distribution of fragment ions from intrinsic constituents as well as external chemicals like the hair dye ingredients used in this study. The observation of pPDA and HPO4- penetrating into the internal region of hair might initiate a renewed interest in exposure study.
In chapter 3, A model organic light-emitting diodes (OLEDs) with structure of tris(8-hydroxyquinoline) aluminum (Alq3)/N,N’-diphenyl-N,N’-bis[1-naphthy- (1,1’-diphenyl)]-4,4’-diamine (NPB)/indium tin oxide (ITO)-coated glass was fabricated for diffusion study by ToF-SIMS. The results demonstrate that ToF-SIMS is capable of delineating the structure of multi-organic layers in OLEDs and providing specific molecular information to aid deciphering the diffusion phenomena. Upon heat treatment, the solidity or hardness of the device was reduced. Complicated chemical reaction might occur at the NPB/ITO interface and results in the formation of a buffer layer, which terminates the upper diffusion of ions from underlying ITO.
In chapter 4, all-nanoparticle multilayer films were prepared by layer-by-layer deposition of SiO2 and Al2O3 nanoparticles onto polyester (PE) substrate. The top-most SiO2 (and Al2O3) layer was characterized using ToF-SIMS and SEM. An element-specific homogeneity index obtained by ToF-SIMS measurement provides clue to the formation mechanism. Experimental results from ToF-SIMS and SEM accord well with molecular dynamics simulation results, demonstrating the potential of using ToF-SIMS to study all-nanoparticle multilayer films.
In chapter 5, we have investigated the growth behavior in all-nanoparticle multilayer films using a novel indicator layer by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) detection. The all-nanoparticle multilayer films were prepared by dipping the polyester substrate with electrostatic charges alternatively into solutions containing three different types of nanoparticles (TiO2, Al2O3, and SiO2). Upon the deposition of each layer, ToF-SIMS was employed to determine the surface chemical composition of intermediate products. The intermixing extent of TiO2 indicator layer was used to reveal the stratification of each layer. Combining with zeta-potential measurements, the solvation and deposition of the under-layer species in the aqueous environment during fresh layer formation was proposed as a plausible cause for mutilayers not stratified into well-defined layers but displaying a nonlinear growth behavior.
1. Vickerman, J., ToF-SIMS: Surface Analysis by Mass Spectrometery. 1st ed.; IM: 2001; p 1.
2. Thomson, J. J., On the theory of the electric discharge in gases. Phil. Mag. 1910, 252.
3. Herzog, R. F. K.; Viebock, F. P., Diffusion in Silicon Isotope Heterostructures. Phys. Rev. 1949, 76, 855L.
4. Liebl, H. J.; Herzog, R. F. K., J. Appl. Phys. 1963, 34, 2893.
5. Castaing, R.; Slodzian, G., J. Microscopic. 1962, 395.
6. Benninghoven, A., Z. Physik 1970, 230, 403.
7. Plog, C.; L.Wiederman; Benninghoven, A., Surf. Sci. 1977 67, 565.
8. Vickerman, J., ToF-SIMS: Surface Analysis by Mass Spectrometery. IM: 2001; p 12.
9. Müller, A.; Benninghoven, A., Surf. Sci. 1973, 41, 493.
10. Niehuis, E.; Heller, T.; Feld, H.; Benninghoven, A., Design and performance of a reflectron based time-of-flight secondary ion mass-spectrometer with electrodynamic primary Ion Mass Separation. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1987, 5, (4), 1243-1246.
11. ION-TOF, ION-TOF IV user's guide. p 23-25.
12. Vickerman, J., ToF-SIMS: Surface Analysis by Mass Spectrometery. IM: 2001; p 95.
13. Walzak, M. J.; McIntyre, N. S.; Prater, T.; Kaberline, S.; Graham, B. A., Detection and mapping of chimassorb 944FD antioxidant additive in polyethylene using TOF-SIMS. Analytical Chemistry 1999, 71, (7), 1428-1430.
14. Schueler, B. W., Microscope Imaging by Time-of-Flight Secondary Ion Mass-Spectrometry. Microscopy Microanalysis Microstructures 1992, 3, (2-3), 119-139.
15. The information was accessed at http://www.ion-tof.com/
16. Makinouchi, S.; Nagayama, S.; Takano, A.; Kudo, M., OBSERVATION OF THE OXYGEN-ION IMAGE ON ALN CERAMICS BY SIMS. Bunseki Kagaku 1991, 40, (11), 855-857.
17. Kikuma, J.; Imai, H., Yield enhancement effect of low-energy O-2(+) ion bombardment in Ga focused ion beam SIMS. Surface and Interface Analysis 2001, 31, (9), 901-904.
18. Peebles, D. E.; Ohlhausen, J. A.; Kotula, P. G.; Hutton, S.; Blomfield, C., Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time. Journal of Vacuum Science & Technology A 2004, 22, (4), 1579-1586.
19. Tyler, B. J.; Rayal, G.; Castner, D. G., Multivariate analysis strategies for processing ToF-SIMS images of biomaterials. Biomaterials 2007, 28, (15), 2412-2423.
20. ASTME-42, Standard terminology relating to surface analysis E 73-91c. Philadelphia: 1992.
21. Iltgen, K.; Bendel, C.; Benninghoven, A.; Niehuis, E., Optimized time-of-flight secondary ion mass spectroscopy depth profiling with a dual beam technique. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1997, 15, (3), 460-464.
22. Grehl, T.; Mollers, R.; Niehuis, E., Low energy dual beam depth profiling: influence of sputter and analysis beam parameters on profile performance using TOF-Sims. Applied Surface Science 2003, 203, 277-280.
23. Bennett, J.; Dagata, J. A., Ultra-Shallow Depth Profiling With Time-of-Flight Secondary-Ion Mass-Spectrometry. Journal of Vacuum Science & Technology B 1994, 12, (1), 214-218.
24. Bersani, M.; Giubertoni, D.; Barozzi, M.; Elacob, E.; Vanzetti, L.; Anderle, M.; Lazzeri, P.; Crivelli, B.; Zanderigo, F., D-SIMS and ToF-SIMS quantitative depth profiles comparison on ultra thin oxynitrides. Applied Surface Science 2003, 203, 281-284.
25. Brox, O.; Iltgen, K.; Hellweg, S.; Benninghoven, A., Determination of silicon oxide layer thickness by time-of-flight secondary ion mass spectroscopy. Journal of Vacuum Science & Technology B 1999, 17, (5), 2191-2192.
26. Guan, J. J.; Gale, G. W.; Bennett, J., Effects of wet chemistry pre-gate clean strategies on the organic contamination of gate oxides for metal-oxide-semiconductor field effect transistor. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2000, 39, (7A), 3947-3954.
27. Yang, C. T.; Chang-Liao, K. S.; Chang, H. C.; Sahu, B. S.; Wang, T. C.; Wang, T. K.; Wu, W. F., Integration of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics for MOS device applications. Microelectronic Engineering 2007, 84, 2916-2920.
28. Chen, B. J.; Lee, P. L.; Chen, W. Y.; Mai, F. D.; Ling, Y. C., Hair dye distribution in human hair by ToF-SIMS. Applied Surface Science 2006, 252, (19), 6786-6788.
29. Kempson, I. M.; Skinner, W. M., ToF-SIMS analysis of elemental distributions in human hair. Science of the Total Environment 2005, 338, (3), 213-227.
30. Graf, N.; Yegen, E.; Lippitz, A.; Treu, D.; Wirth, T.; Unger, W. E. S., Optimization of cleaning and amino-silanization protocols for Si wafers to be used as platforms for biochip microarrays by surface analysis (XPS, ToF-SIMS and NEXAFS spectroscopy). Surface and Interface Analysis 2008, 40, (3-4), 180-183.
31. Makohliso, S. A.; Leonard, D.; Giovangrandi, L.; Mathieu, H. J.; Ilegems, M.; Aebischer, P., Surface characterization of a biochip prototype for cell-based biosensor applications. Langmuir 1999, 15, (8), 2940-2946.
32. Belu, A. M.; Davies, M. C.; Newton, J. M.; Patel, N., TOF-SIMS characterization and imaging of controlled-release drug delivery systems. Analytical Chemistry 2000, 72, (22), 5625-5638.
33. Zhou, Q. S.; Zhao, J.; Stout, J. G.; Luhm, R. A.; Wiedmer, T.; Sims, P. J., Molecular cloning of human plasma membrane phospholipid scramblase - A protein mediating transbilayer movement of plasma membrane phospholipids. Journal of Biological Chemistry 1997, 272, (29), 18240-18244.
34. Colliver, T. L.; Brummel, C. L.; Pacholski, M. L.; Swanek, F. D.; Ewing, A. G.; Winograd, N., Atomic and molecular imaging at the single-cell level with TOF-SIMS. Analytical Chemistry 1997, 69, (13), 2225-2231.
35. Mai, F. D.; Chen, B. J.; Wu, L. C.; Li, F. Y.; Chen, W. K., Imaging of single liver tumor cells intoxicated by heavy metals using ToF-SIMS. Applied Surface Science 2006, 252, (19), 6809-6812.
36. McQuaw, C. M.; Sostarecz, A. G.; Zheng, L.; Ewing, A. G.; Winograd, N., Investigating lipid interactions and the process of raft formation in cellular membranes using ToF-SIMS. Applied Surface Science 2006, 252, (19), 6716-6718.
37. Parry, S.; Winograd, N., High-resolution TOF-SIMS imaging of eukaryotic cells preserved in a trehalose matrix. Analytical Chemistry 2005, 77, (24), 7950-7957.
38. Schwieters, J.; Cramer, H. G.; Heller, T.; Jurgens, U.; Niehuis, E.; Zehnpfenning, J.; Benninghoven, A., High mass resolution surface imaging with a time-of-flight secondary ion mass-spectroscopy scanning microprobe. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 1991, 9, (6), 2864-2871.
39. Schueler, B.; Sander, P.; Reed, D. A., A Time-of-Flight Secondary Ion-Microscope. Vacuum 1990, 41, (7-9), 1661-1664.