簡易檢索 / 詳目顯示

研究生: 王紹陽
Wang, Shao-Yang
論文名稱: 液靜壓線性平台之多變數液壓控制系統設計暨驗證
Development and verification of multi-variable hydraulic pressure control system for hydrostatic linear platform
指導教授: 宋震國
Sung, Cheng-Kuo
口試委員: 蘇偉儁
Su, Wei-Jiun
林顯易
Lin, Hsien-I
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 100
中文關鍵詞: 液壓控制液靜壓平台雙重迴路控制反模型
外文關鍵詞: Hydraulic, Hydrostatic, Double-loop, Model-inversion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當軸承以流體作為主要能量傳遞媒介時,可稱該系統為一液壓軸承,相較於採機械接觸元件作為技術核心的傳統軸承,液壓軸承往往具備更佳的精度、剛性及更長的生命週期,然而,相對昂貴的造價與繁雜的設計流程使其技術在國內仍不甚普及。舉例來說,液靜壓軸承對於環境溫度及供油壓力的變化較為敏感,需引入精密感測器及控制元件穩定操作環境,增加不少除軸承本體之外的設計製造成本。
    通常,液靜壓軸承會外接一套液壓調節裝置作為供壓來源,藉由將油體打入靜壓腔內形成一高壓薄油層,並利用油腔壓力所產生的承載力使軸體浮升。然而,本研究發現,由於傳統供油系統往往不具備流量補償機制,是以在軸承參數設計階段視為定值的供油壓力,亦可能隨外界負載變化而不同,最終導致液靜壓軸承無法操作於穩定的環境中,甚至影響其剛性與精度表現。
    為解決上述問題,本文採用電磁比例壓力閥作為主要壓力調控裝置,藉由即時監控回授訊號,迅速地補償油壓,期望壓力變動幅度盡可能地縮小。在控制系統方面,本研究利用dSPACE控制器及ControlDesk軟體,設計液壓調節系統之人機介面,搭配MATLAB識別系統模型與分析動態特徵。待數學模型建立完成後,搭配前饋與反饋等控制策略設計一套雙重迴路架構,利用模擬與實驗方法驗證控制設計,並探討控制前後液壓調節系統的穩壓表現。最後,連接液壓調節系統與液靜壓線性平台,觀察施予負載時系統之穩壓效果及剛性變化。
    從實驗的結果中可以看出,相較於傳統供油裝置,加入雙重迴路控制後的液壓調節系統能夠迅速且穩定地追蹤參考訊號,達到穩壓的效果。未來亦可嘗試使用不同的控制方法,或是替換現有的液壓元件與元件間配置方式,進一步優化整體供油裝置的性能,提供液靜壓軸承一個更為穩定的操作環境。


    As a system treated fluid as its medium between the slider and the guideway, we used to call it a hydraulic guideway ,or maybe a hydraulic platform. Comparing to those traditional bearings who utilize mechanical-contacted element as its core technology, hydraulic ones often equip better accuracy, rigidity and life cycle performance. However, relatively expensive cost and complicated design process make it not that popular in the country so far. For example, hydrostatic bearings are extremely sensitive to changes in ambient temperature and oil supply pressure, so it is necessary to introduce a large number of sensors and control components to stabilize its operating environment. Inevitably, it will take a lot of extra cost excluding designing and manufacturing.
    In common, there is always a set of hydraulic regulators as an oil supply attached to hydrostatic bearings. The oil injected into the chamber will produce a thin oil layer with pressure between slider and guideway. Finally, the pressure difference between each chamber generate bearing capacity to float the slider. However, this study found that the flow rate of traditional oil supply system is far less than the rate of change in flow resistance. The above corollary make the hypothesis that supplied pressure is a constant value set at designing stage invalid consequently.
    To solve these problems, in this study, proportional pressure valves had been used as main regulating devices of oil supply system. Using real-time monitoring technique, it is expected that the impact on system rigidity caused by pressure changes will be minimized. With MATLAB/ Simulink to identify the plant model and analyze its dynamic characteristics, this paper used dSPACE as controller and its derivative software ControlDesk to complete the man-machine interface design. Afterward, design inner and outer loop using control methods such as feedforward and feedback. Last but not least, comparing the simulation and experiment performance with each control strategies respectively.
    It is obvious that comparing with conventional oil supply devices, the hydraulic adjustment system with double-loop control is able to track the reference signal faster, more accurate, and more stable. It also provide hydrostatic bearings better sources of pressure ,and achieve the above goal of this study as well.

    摘要 II Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 縮寫與符號說明 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 液靜壓軸承相關研究 2 1.2.2 被動式液壓調節方法相關研究 3 1.2.3 藉電磁閥控制之液壓調節方法相關研究 4 1.3 研究目的與本文架構 5 第二章 液靜壓軸承基礎理論介紹 6 2.1 液靜壓軸承之壓力關係推導 6 2.1.1 被動式壓力調節元件 6 2.1.2 線性平台之靜壓單向墊理論 8 2.1.3 線性平台之靜壓對向墊理論 11 2.2 液靜壓線性軸承之介紹與運動方程式推導 14 第三章 液壓調節理論與設備介紹 17 3.1 主動式電磁調控裝置介紹及模型推導 17 3.2 多輸出液壓調節系統配置 22 3.2.1 液壓元件配置 22 3.2.2 控制系統配置 25 3.3液靜壓軸承系統整機配置 29 第四章 液壓系統之控制理論與設計 33 4.1 內迴路與外迴路之雙重控制規劃 33 4.2 內迴路控制理論 34 4.3 外迴路控制理論 37 4.3.1 反饋與前饋控制法 38 4.3.2 並聯式前饋控制法 42 4.3.2 串聯式反模型前饋控制法 48 第五章 控制器參數設計與系統識別 50 5.1 內迴路控制系統之參數設定 50 5.2 含內迴路控制系統之參數識別 52 5.3 外迴路控制系統之參數設定 59 5.3.1 並聯式前饋控制設計 59 5.3.2 串聯式反模型前饋控制設計 60 第六章 液壓調節系統之控制模擬與驗證 62 6.1 雙重迴路控制之模擬 62 6.1.1 並聯式前饋控制模擬結果 64 6.1.2 串聯式反模型前饋控制模擬結果 67 6.1.3 雙重迴路控制模擬結果與分析比較 70 6.2 雙重迴路控制之實驗 71 6.2.1 未控制之實驗結果 71 6.2.2 內迴路控制實驗結果 75 6.2.3 外迴路並聯式控制實驗結果 81 6.2.4 外迴路串聯式控制實驗結果 83 6.2.5 控制實驗結果與分析比較 87 6.3 連結液靜壓線性滑軌之實驗結果 87 第七章 結論與未來工作 96 7.1 結論 96 7.2 未來工作 96 參考文獻 99

    1.L. D. Girard, Application des Surfaces Gilssantes. Paris, 1862.
    2.A. A. Raimondi , J.B., Compensated Hydrostatic Journal Bearing. Lubr. Eng, 1957. 13(1): pp. 28-37.
    3.L. S. Andres, Hydrodynamic Fluid Film Bearings and Their Effect on the Statbility of Rotating Machinery, in In Design and Analysis of High Speed Pumps. 2006.
    4.W. B. Rowe, Hydrostatic, Aerostatic, and Hybrid Bearing Design. ELSEVIER, 2012.
    5.V. S. Telingater, Hydraulic for Open Hydrostatic Slideways. Machine and Tooling, 1972. 43: pp. 15-20.
    6.O. S. Yuichi Sato, Load capacity and stiffness of misaligned hydrostatic recessed journal bearings. Wear, 1893. 92(2): pp. 231-241.
    7.Fei Xue, W. Z., Yaolong Chen, Zhiwei Wang, Research on Error Averaging effect of Hydrostatic guideways. Precision Engineering, 2012. 36(1): pp. 84-90.
    8.S. B. Malanoski, A. M. Loeb, The effect of the method compensation on hydrostatic bearing stiffness. ASME transcation, Journal of Basic Engineering, 1961: pp. 179-187.
    9.T. S. Ling, On the optimization of the stiffness of externally pressurized bearings. ASME, 1962. 84: pp. 119-122.
    10.W. B. Rowe, J.P.O.D., Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing. Proc. I. E. Tribology, 1970.
    11.S. C. Sharma, R.S., S. C. Jain, N. Singh, S. K. Singh, Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries. Tribology Transactions, 1998. 41: pp. 375-381.
    12.Y. Kang, P.C.S., C. H. Chen, Y. P. Chang, H. H. Lee, Modified determination of fluid resistance for membrane-type restrictors. Industrial Lubrication and Tribology, 2007: pp. 123-131.
    13.N. D. Vaughan, J.B.G., The modeling and simulation of a proportional solenoid valve. Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control, 1996. 118(1): pp. 5-120.
    14.N. C. Cheung, K.W.L., M. F. Rahman, Modelling a Linear and Limited Travel Solenoid. IEEE, 1993.
    15.R. Maiti, R.S., J. Watton, The static and dynamic characteristics of a pressure relief valve with a proportional solenoid-controlled pilot stage. Proceedings of the Institution of Mechanical Engineers, 2002. 216(I2): pp. 143-56.
    16.W.C. Lee , Characterization of the Static and Dynamic Performance of a Novel Pressure-sense-compensating Hydrostatic Bearing. 2012, National Tsing Hua University. pp. 18-26.
    17.R. Bassani and B. Piccigallo, Hydraulic Lubrication. 1992, Netherlands: Elsevier.
    18.J.Y. Tu, The Adaptive Control of Generalised Dynamically Substructured Systems. PhD thesis, Mechanical Engineering, University of Bristol, 2009. pp. 99-101.
    19.J.G. Ziegler and N.B. Nichols, Optimum settings for automatic controllers. ASME transcation, 1942. 64: pp. 759-768.
    20.B.C. Kuo, Farid Golnaraghi, Automatic Control Systems. ninth edition ed. 2010, United States: WILEY. pp. 489-490.

    QR CODE