簡易檢索 / 詳目顯示

研究生: 吳長欣
Wu, Chung-Shing
論文名稱: Residual stress measurement in highly textured thin film by in-plane x-ray diffraction
利用平面X光繞射法量測具高度織構薄膜之殘留應力
指導教授: 李信義
Lee, Hsin-Yi
黃嘉宏
Huang, Jia-Hong
口試委員: 程海東
林志明
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 81
中文關鍵詞: X光繞射應力量測
外文關鍵詞: x-ray, diffraction, stress, measurement
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以往利用X光繞射法量測具高度織構薄膜之殘餘應力時通常會遇到問題。例如當我們利用傳統sin2□□X光繞射法來量測具高度織構薄膜之殘餘應力時,其可得有效資料的□角範圍可能會被限制在非常窄的範圍內,因此可能會造成因取樣體積過小所導致的誤差。為了解決上述的問題,我們提出一個新的X光繞射法,in-plane-sin2□□X光繞射法,來量測具高度織構薄膜之殘餘應力。已知,具鬚根狀織構薄膜之晶面方向在方位角上的分佈近似無規則狀態,此現象能被用來擴展在X光量測技術中可利用的□角範圍。為了利用上述的現象與實現新提出的量測法,我們利用國家同步幅射中心裡的同步幅射光源與八環繞射儀,藉由高強度的X光源與小角度地偏移八環中的□與□角來獲得與試片面法向量垂直方向上的繞射訊號,此時sin2□□X光繞射法利用的□角範圍可從±30□到±90□中取得有效資料。關於in-plane-sin2□□X光繞射法的可信度之證明,我們利用已知被應用於薄膜應力量測中且確認可信的cos2□sin2□ X光繞射法來證實。其作法為比較此兩種不同的X光繞射法在同一氮化鈦薄膜試片上各自求得之殘餘應力,並且利用光學曲率法做再次確認。實驗結果顯示in-plane-sin2□□X光繞射法與cos2□sin2□ X光繞射法所求得之殘餘應力值相互近似,並且在作資料點的線性回歸時可得高達99%的確定係數,此結果表示in-plane-sin2□□X光繞射法被證實具有高度的可信度。然後,我們在具高度織構之鐵酸鉍薄膜上進行cos2□sin2□ X光繞射法與in-plane-sin2□□X光量測法的應力量測實驗。結果表示利用較大□角範圍取得有效資料的in-plane-sin2□□X光繞射法所測得之殘餘應力比cos2□sin2□ X光繞射法具有更高的可信度。因此,在使用X光繞射法量測殘餘應力時需要注意,若欲量得可信的殘餘應力資料與獲得有效的確定係數,則在量測時必須使用大的□角範圍方為可信。


    The measurement of residual stress on highly textured thin films is usually problematic. When using traditional sin2□ x-ray diffraction method to measure residual stress on textured thin films, the tilt angle □□may have to be limited in a very narrow range to acquire valid data□ which may lead to measurement errors due to too small sampling volume. To solve this problem, we proposed a new x-ray diffraction method, in-plane-sin2□ x-ray diffraction method to measure the residual stress for highly textured thin films. For a fiber textured thin films, the plane orientation is nearly random distributed in the azimuthal direction, which can be used to extend the range of the tilt angle □ in the XRD technique. Our proposed technique employed the synchrotron x-ray source and an eight-circle diffractometer in NSRRC, by the high intensity of x-ray source and slightly shifting the □ and □ angles of the diffractometer to acquire the in-plane diffraction data, sin2□□XRD method could be operated in a wide range of □ from ±30□ to ±90□. The reliability of in-plane-sin2□ method was verified by another established XRD technique, cos2□sin2□ XRD method which is known as a reliable technique to measure residual stress in thin films. For comparison with the in-plane-sin2□ method, the cos2□sin2□ method was performed on a TiN thin film and the stress was measured by these two methods and the stress was also confirmed by laser curvature method. The measurements showed comparable results with R2 values as high as 99%, indicating the reliability of the proposed method was validated. Then cos2□sin2□ method and in-plane-sin2□ method were applied on highly texture BFO thin films. The results indicated that in-plane-sin2□ method can collect valid data in wider range of □ angle and obtain more reliable residual stress values than cos2□sin2□ method. Therefore, it is noted that the reliable stress data and the effectiveness of R2 value should be assured by wide □-range as using XRD techniques.

    誌謝 ...........................................................................................................................................i 摘要 .........................................................................................................................................iii Abstract ....................................................................................................................................iv Content ......................................................................................................................................v Figure Caption .......................................................................................................................viii Table Caption ............................................................................................................................x Chapter 1 Introduction ...........................................................................................................1 Chapter 2 Literature Review ..................................................................................................3 2.1 Nondestructive Methods of Residual Stress Measurement for Thin Film specimens .3 2.1.1 Traditional sin2□□X-Ray Diffraction Techniques .............................................3 2.1.2 X-Ray Diffraction Techniques with Asymmetrical Geometry .........................4 2.1.3 Laser Curvature Technique ...............................................................................5 2.1.4 Micro-Raman Analysis .....................................................................................6 2.2 The Advantages of Using Synchrotron Radiation X-ray .............................................6 2.3 Characteristics of BiFeO3 ............................................................................................7 2.3.1 Microstructure of BFO .....................................................................................7 2.3.2 Ferroelectric Properties of BFO .......................................................................9 2.3.3 Elastic Constants of BFO ...............................................................................11 Chapter 3 Theoretical Basis .................................................................................................12 3.1 Geometry of In-Plane-sin2□ Diffraction Method with Eight-Circle Diffractometer 12 3.2 Mathematical Derivation of In-Plane-sin2□ XRD Method ... ...................................16 Chapter 4 Experimental Details ...........................................................................................19 4.1 Specimen Preparation and Deposition Process .........................................................19 4.2 Characterization Methods for the Crystal Structures of Titanium Nitride and BiFeO3 .....................................................................................................................23 4.2.1 X-Ray Diffraction (XRD) ..............................................................................23 4.2.2 Grazing Incident X-Ray Diffraction (GIXRD) .............................................24 4.2.3 In-Plane Grazing Incident X-Ray Diffraction (IP-GIXRD) ..........................24 4.3 Measurement of Residual Stress and Strain ..............................................................26 4.3.1 Laser Curvature Method ................................................................................26 4.3.2 cos2□sin2□ □and In-Plane-sin2□ XRD Methods ..............................................26 Chapter 5 Results ..................................................................................................................31 5.1 Stress Measurement on TiN Samples ......................................................................31 5.1.1 XRD, GIXRD and IP-GIXRD .......................................................................31 5.1.2 The Residual Stress Measurement by Laser Curvature, cos2□sin2□ XRD and In-Plane-sin2□ □XRD Methods .......................................................................35 5.2 Stress Measurement on BFO/Pt/Si (SPB) Specimens ...............................................39 5.2.1 XRD, GIXRD and IP-GIXRD .......................................................................39 5.2.2 Residual Stress Measurement of BiFeO3 by Laser Curvature, cos2□sin2□ XRD and In-Plane-sin2□ XRD Methods .......................................................43 5.3 Stress Measurement on BFO/LNO/Si (SLB) Specimens ..........................................47 5.3.1 XRD, GIXRD and IP-GIXRD .......................................................................47 5.3.2 Residual Stress Measurement of BiFeO3 by Laser Curvature, cos2□sin2□ XRD and In-Plane-sin2□□X Methods ...........................................................54. Chapter 6 Discussion ............................................................................................................62 6.1 Effectiveness of the In-Plane-sin2□□XRD Method ...................................................62 6.2 Effect of the □ Range on Residual Stress Measurement by XRD Techniques .........63 6.3 Advantages and Disadvantages of the In-Plane-sin2□ XRD Method .......................64 Chapter 7 Conclusions ..........................................................................................................66 Reference ................................................................................................................................67 Appendix ................................................................................................................................73

    [1] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E.J. Mittemeijer, "Stress analysis of polycrystalline thin films and surface region by X-ray diffraction", Journal of Applied Crystallography 38 (2005) 1.
    [2] C.H. Ma, J.H. Huang, H. Chen, ” Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films 418 (2002) 73.

    TiN、VN、ZrN & ZrNxOy with cos2□sin2□ XRD method
    [3] C.M. Ma, J.H. Huang, H. Chen, “Texture evolution of transition-metal nitride thin films by ion beam assisted deposition”, Thin Solid Films 446 (2004) 184.
    [4] J.H. Huang, K.W. Lau, G.P. Yu, "Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering", Surface & Coatings Technology 191 (2005) 17.
    [5] J.H. Huang, H.C. Yang, X.J. Guo, G.P. Yu, "Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating", Surface & Coatings Technology 195 (2005) 204.
    [6] C.L. Chang, J.Y. Jao, W.Y. Ho, D.Y. Wang, "Effects of titanium-implanted pre-treatments on the residual stress of TiN coatings on high-speed steel substrates", Surface & Coatings Technology 201 (2007) 6702.
    [7] S. Massl, W. Thomma, J. Keckes, R. Pippan, "Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique", Acta Materialia 57 (2009) 1768.
    [8] H.M. Tung, J.H. Huang, D.G. Tsai, C.F. Ai, G.P. Yu, “Hardness and residual stress in nanocrystalline ZrN films:Effect of bias voltage and heat treatment”, Material Science and Engineering A 500 (2009) 104.
    [9] J.H. Huang, K.H. Chang, G.P. Yu, “Synthesis and characterization of nanocrystalline ZrNxOy thin films on Si by ion plating”, Surface & Coatings Technology 201 (2007) 6404.
    [10] J.H. Huang, T.H. Wu, G.P. Yu, “Heat treatment induced phase separation and phase transformation of ZrNxOy thin films deposited by ion plating”, Surface & Coating Technology 203 (2009) 3491.
    [11] J.H. Huang, T.C. Lin, G.P. Yu, “Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel”, Surface & Coating Technology 206 (2011) 107.

    Traditional sin2□ XRD method
    [12] F. Gisen, R. Glocker, E. Osswald, Z Tech Phys 17 (1936) 145.
    [13] P.A. Flinn, C. Chiang, "X-ray diffraction determination of the effect of various passivations on stress in metal-films and patterned lines", Journal of Applied Physics 67 (1990) 2927.
    [14] A. Aubry, F. Armanet, G. Beranger, J.L. Lebrun, G. Maeder, "Measurement of residual stresses by x-ray diffraction in a Ni/NiO system obtained by high-temperature oxidation", Acta Metallurgica 36 (1988) 2779.
    [15] C. Liu, A.M. Huntz, J.L. Lebrun, "Origin and development of residual-stress in the Ni-NiO system in-situ studies at high-temperature by x-ray diffraction", Materials Science and Engineering A 160 (1993) 113.
    [16] S.D. Tsai, D. Mahulikar, H.L. Marcus, I.C. Noyan, J.B. Cohen, "Residual-stress measurements on Al-graphite composites using x-ray diffraction", Materials Science and Engineering 47 (1981) 145.
    [17] B. Eigenmann, B. Scholtes, E. Macherauche, "Determination of residual-stresses in ceramic and ceramic-metal composite by x-ray diffraction methods", Materials Science and Engineering A 118 (1989) 1.
    [18] M. Zaouali, J.L. Lebrun, P. Gergaud, "x-ray diffraction determination of texture and internal-stresses in magnetron PVD molybdenum thin-films", Surface & Coatings Technology (1991) 50.
    [19] J.C. Pivin, J. Morvan, D. Mairey, J. Mignot, "Determination of the stress level in growing NiO films by X-ray diffraction", Scripta Metallurgica 17 (1983) 179.
    [20] K.F. Badawi, A. Declemy, A. Naudon, P. Goudeau, "Residual-stress determination in 1000 A tungsten thin-films by x-ray diffraction", Journal de Physique III 2 (1992) 1741.
    [21] S.Y. Chiou, S.H. Hwang, "Residual stress and strains of highly textured ZrN films examined by x-ray diffraction methods", Journal of Physics D 31 (1998) 349.
    [22] A.M. Huntz, C. Liu, M. Kornmeier, J.L. Lebrun, ”The determination of stresses during oxidation of Ni:in situ measurements by XRD at high temperature”, Corrosion Science 35 (1993) 989.
    [23] F. Yang, J.Q. Jiang, F. Fang, Y. Wang, C. Ma, ”Rapid determination of residual stress profiles in ferrite phase of cold-drawn wire by XRD and layer removal technique”, Materials Science and Engineering 486 (2008) 455.
    [24] I.C. Noyan, J.B. Cohen, “Residual Stress, Measurement by Diffraction and Interpretation”, Springer-Verlag, New York, 1987.

    X-ray techniques with asymmetrical geometry
    [25] V. Valvoda, R. Kuzel, R. Cerny, D. Rafaja, J. Musil, S. Kadlec, A.J. Perry, “Structural-analysis of tin films by Seemann-Bohlin x-ray diffraction”, Thin Solid Films 193 (1990) 401.
    [26] R. Feder, B.S. Berry, “Seeman-Bohlin X-ray Diffractometer for thin films”, J. Appl. Crystallogr. 3 (1970) 372.
    [27] E.L. Haase, “The determination of lattice-parameters and strains in stressed thin-films using x-ray diffraction with Seemann-Bohlin focusing ”, Thin Solid Films 124 (1985) 283.

    [28] A. Huang, S.R. Shannigrahi, A.D. Handoko, H.R. Tan, ” Stress Analysis of (001) Preferred Oriented BiFeO3 and Bi(Cr0.03Fe0.97)O3 Films”, Integrated Ferroelectrics 113 (2009) 9.

    Laser Curvature Method
    [29] G.G. Stoney, “The tension of metallic films deposited by electrolysis”,Proc. R. Soc. Lond. A 82 (1909) 172.
    [30] A. Witvrouw, Ph.D. thesis, Harvard University, 1992.
    [31] C.A. Klein, “How accurate are Stoney’s equation and recent modifications”, Journal of Applied Physics 88 (2000) 9.

    Raman-Analysis
    [32] T. Ohno, T. Matsuda, K. Ishikawa, H. Suzuki, “Thickness dependence of residual stress in alkoxide-derived Pb(Zr0.3Ti0.7)O3 thin films by chemical solution deposition”, Jpn. J. Appl. Phys. 45 (2006) 7265.
    [33] L. Sun, Y.F. Chen, L. He, C.Z. Ge, D.S. Ding, T. Yu, M.S. Zhang, N.B. Ming, "Phonon-mode hardening in epitaxial PbTiO3 ferroelectric thin films", Phys. Rev. B 55 (1997) 12218.

    BiFeO3
    [34] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299 (2003) 1719.
    [35] F. Zavaliche, S.Y. Yang, T. Zhao, Y.H. Chu, M.P. Cruz, C.B. Eom, R. Ramesh, “Multiferroic BiFeO3 films: domain structure and polarization dynamics”, Phase Transitions 79 (2006) 991.
    [36] F. Kubel, H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3”, Acta Crystallogr. Sect. B 46 (1990) 698.
    [37] C.C. Lee, J.M. Wu, C.P. Hsiung, “Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt/Ru barrier layers”, Applied Physics Letters 90 (2007) 182909.
    [38] Y.H. Lee, J.M. Wu, Y.L. Chueh, L.J. Chou, “Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current”, Applied Physics Letters 87 (2005) 172901.
    [39] Y. Wang, Y. Lin, C.W. Nana, “Thickness dependent size effect of BiFeO3 films grown on LaNiO3-buffered Si substrates”, Journal of Applied Physics 104 (2008) 123912.
    [40] Y.T. Liu, S.Y. Chen, H.Y. Lee, “Charateristics of highly orientated BiFeO3 thin films on a LaNiO3 coated Si substrate by RF sputtering”, Thin Solid Films 518 (2010) 7412.
    [41] S. Nakashima, D. Ricinschi, J. M. Park, T. Kanashima, H. Fujisawa, M. Shimizu, M. Okuyama, “Ferroelectric and structural properties of stress-constrained and stressrelaxedpolycrystalline BiFeO3 thin films”, Journal of Applied Physics 105 (2009) 061617.
    [42] S.J. Chiu, Y.T. Liu, H.Y. Lee, G.P. Yu, J.H. Huang, "Growth of BiFeO3/SrTiO3 artificial superlattice structure by RF sputtering", Journal of Crystal Growth 334 (2011) 90.
    [43] S.L. Shang, G. Sheng, Y. Wang, L.Q. Chen, Z.K. Liu, “Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations”, Physical Review B 80 (2009) 052102.
    [44] P. Hajra, M. Pal, A. Datta, D. Chakravorty, V. Meriakri, M. Parkhomenko, “Magnetodielectric properties of nanodisc bismuth ferrite grown within Na-4 mica nanochannels”, Journal of Applied Physics 108 (2010) 114306.
    [45] B. Mikolajczyk, M. Bedzyk, J. Klug, J.C. Lin, “X-ray Characterization of a multiferroic bismuth ferrite thin film”, Nanoscape 5 (2008) 95.
    [46] P. Scherrer, Gott. Nachr. 2 (1918) 98.
    [47] H. Ljungcrantz, M. Oden, L.Hultman, J.E. Greene, J.E. Sundgren, “Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO”, J. Appl. Phys. 80 (1996) 6725.
    [48] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, “Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy”, J. Appl. Phys. 72 (1992) 1805.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE