研究生: |
王俊文 Wang, June-Wen |
---|---|
論文名稱: |
鈍化裂縫前端彈塑性變形之探討 |
指導教授: |
蔣長榮
Chiang, Chun-Ron |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 破裂力學 、應力強度因子 、滑移線場理論 、隨動硬化規則 、裂縫 |
外文關鍵詞: | fracture mechanics, stress intensity factor, slip line theory, Kinematic Hardening, crack |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用工程軟體『Ansys』來分析一含裂縫之彈塑性材料,假設其裂縫前端是一初始曲率半徑為0.5mm的鈍化裂縫,在受第I型負載模式(Mode I)及小尺度塑變條件下,應力強度因子(Stress Intensity Factor) 與材料的應變硬化率對裂縫前端的應力,應變與塑性區分布所造成的影響。材料特性以雙線性(Bilinear)塑性力學模型及隨動硬化規則(Kinematic Hardening)為主。
由文中結果可知,因為裂縫前端為鈍化的關係,在材料本身的應變硬化率(千分之3.585)下,應力強度因子為2300時,裂縫前端Y向應力最大值發生在距裂縫前端1.649 mm處,而且裂縫前端Y向應力值在應變硬化率大於0.02會達到最大值;在塑性區的範圍內,材料的應變硬化率對應力和應變的分布影響很大。
This thesis is analyzed an elastic-plastic material with a crack by using Finite Element Method simulation, and suppose there is a blunt crack with a curvature radius which is equal to 0.5mm. For the model I loading and the small scale deformation, the stress intensity factor KI and strain hardening of material influence caused toward stress strain and plastic zone distribution of the crack tip. The material property relies primarily on bilinear-plasticity mechanics model and kinematics hardening law.
From the result of this work, because of the blunted crack tip (ρ=0.5mm), the position of the maximum value of stress of y direction is equal to 1.649 mm measured from crack tip, when the original strain hardening law of material is equal to 0.003585 and the stress Intensity Factor KI is equal to 2300 MPa . The strain hardening rate is greater than 0.02 and will reach the maximum in the stress of y direction of crack tip. In the range of plastic zone, the strain hardening rate of material strongly influences the distribution of stress and strain.
[1] W. E. Anderson, “An engineer views brittle fracture history,” Boeing report, 1969.
[2] D. Broek, “Elementary engineering fracture mechanics,” 4th Edition, Martinus Nijhoff Publishers, Boston, 1986.
[3] A. A. Griffith, “The phenomena of rupture and flow in solid,” Philosophical Transactions of the Royal Society, Vol. 3, pp.163-198, 1920.
[4] M. Creager, and P. C. Paris, “Elastic field equations for blunt cracks with reference to stress corrosion cracking,” International Journal of Fracture, Vol. 3, pp.247-252, 1967.
[5] J. P. Benthem, “Stress in the region of rounded corners,” International Journal of Solids and Structures, Vol. 23, pp.239-252, 1987.
[6] 蔡秝凱,“正交性複合材料中裂縫前端的微觀尺度應力強度因子”,碩士論文,國立清華大學,2004。
[7] I. S. Tuba , “A method of elastic-plastic plane stress and strain analysis, ” Journal of Strain Analysis, Vol. 1, pp.115-122, 1966.
[8] J. R. Rice, and G. F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material,” Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-23, 1968.
[9] G. R. Irwin, “Analysis of stresses and strains near the end of a crack praversing a plate,” Journal of Applied Mechanics. Vol. 24, pp. 361-364, 1957.
[10] J. R. Rice, “Mathematical analysis in the mechanics of fracture,” Academic Press , pp. 191-311, 1968.
[11] J. W. Hutchinson, “Plastic stress and strain fields at a crack tip,” Journal of the Mechanics and Physics of Solids, Vol. 16, pp.249-263, 1968.
[12] W. F. Chen, D.J. Han, “Plasticity for structural engineering,” Springer-Verlag, Inc., New York, 1988.
[13] 徐秉業、劉信聲,“應用彈塑性力學”,凡異出版社,新竹(台灣),1997。
[14] R. D. Cook, D. S. Malkus, and M. E. Plesha, “Concepts and application of finite element analysis,” 4th ed., John Wiley and Sons, Inc., New York, 1989.
[15] 陳新郁、林政仁,“有限元素分析-理論與應用ANSYS ”,高立 圖書有限公司,台北(台灣),2001。
[16] 陳精一、蔡國忠,“電腦輔助工程分析ANSYS使用指南”,全華科技圖書股份有限公司,台北(台灣),2000。
[17] 賴俊延,“垂直纖維方向裂縫前端的微觀尺度應力強度因子” ,碩士論文,國立清華大學,2005。
[18] G. C. Sih, P. C. Paris, and G. R. Irwin, “On cracks in rectilinearly anisotropic bodies”, International Journal of Fracture, Vol. 1, pp.189-302, 1965.
[19] C. R. Chiang, “On stress concentration factors in orthotropic materials,” Journal of the Chinese Institute of Engineers, Vol. 22, No.3, pp. 301-305, 1999.
[20] 蔣長榮,“異向性材料中鈍化裂縫附近之應力場及其應用”,國
科會計畫,2000。
[21] R. Hill, “Mathematical theory of plasticity”, Clarendon Press, Oxford , pp. 237-252, 1950.
[22] J. R. Rice, and G. F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material”, Journal of the Mechanics and Physics of Solids, Vol. 16, pp. 1-12, 1968.
[23] J. R. Rice, and M. Arthur, Johnson, “The role of large crack tip geometry changes in plane strain fracture”, Journal of the Mechanics and Physics of Solids, Vol. 17, pp. 201-224, 1969.
[24] C. R. Chiang, “The elastic stress fields near blunt crack tips in orthotropic materials”, 第十六屆機械工程研討會論文集, 中華民國88年12月