研究生: |
洪紹景 |
---|---|
論文名稱: |
探討 IRSp53 和 SH2B1beta 在形成絲狀偽足中的角色 Role of IRSp53 and SH2B1beta in filopodium formation |
指導教授: | 陳令儀 |
口試委員: |
陳令儀
徐瑞洲 黃兆祺 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 絲狀偽足 |
外文關鍵詞: | SH2B1 |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
絲狀偽足 (Filopodia) 是一細長且富含肌動蛋白的細胞膜突起結構。絲狀偽足在許多生理過程中扮演重要的角色,包括病原偵測,細胞遷移,傷口癒合以及生長發育。在神經發育過程中,樹突及樹突小刺形成之前,必須先形成絲狀偽足。Insulin receptor substrate protein of 53 kDa (IRSp53) 在先前已被證實會參與調控絲狀偽足的形成。我們初步的結果指出,大量表現一個訊息連接蛋白 SH2B1β 能夠增進海馬迴神經細胞的生長。因此,本研究假設 IRSp53 和 SH2B1β 可能會共同調控細胞骨架的重組,進而促成絲狀偽足的形成。本研究中顯示,在人類胚胎腎細胞株 (293T cells) 中,大量表現 IRSp53 或 SH2B1β 皆能誘導絲狀偽足的形成。此外, SH2B1β 會與 IRSp53 結合,共同增進絲狀偽足的形成以及造成絲狀偽足的分支。另外,本研究也進一步發現,增進絲狀偽足的形成需要 IRSp53 的 IMD 和 SH3 domain 以及 SH2B1β 的 N 端 proline-rich domain,而其中造成絲狀偽足增加的機制為 IRSp53 會吸引SH2B1β 到細胞膜上。最後,本研究也證實, IRSp53 和 SH2B1β 會共同作用,增進海馬迴神經細胞的生長與分枝。總結來說,本研究首先發現 SH2B1β 會透過 IRSp53 複合體,來促進絲狀偽足的形成以及神經軸的生長。
Filopodia are thin, actin-enriched structure of membrane protrusions. Filopodia play instrumental roles in pathogen detection, cell migration, wound healing, and during development. During neurogenesis, filopodium formation precedes the formation of dendrites and spines. The insulin receptor substrate protein of 53 kDa (IRSp53) has been shown to regulate the formation of filopodia. Our preliminary results suggest that overexpressing an adaptor protein SH2B1β enhances neurite outgrowth of hippocampal neurons. Thus, I hypothesize that IRSp53 and SH2B1β may act together to regulate actin cytoskeleton remodeling and thus filopodium formation. In this thesis, I show that overexpression of either IRSp53 or SH2B1β induces the filopodium formation of 293T cells. In addition, SH2B1β interacts with IRSp53 to enhance filopodium formation and highly branched filopodia. Furthermore, IMD and SH3 domains of IRSp53 as well as N-terminal proline-rich domains of SH2B1β are required for the enhancement of filopodium formation. One mechanism for this enhancement of filopodia is that IRSp53 recruits SH2B1β to the plasma membrane. Finally, I demonstrate that IRSp53 and SH2B1β synergistically enhance neurite branching of hippocampal neurons. Taken together, this study provides novel findings that SH2B1β interacts with IRSp53-containing complexes to promote filopodium formation and thus neurite outgrowth.
References
1. May RC (2001) The Arp2/3 complex: a central regulator of the actin cytoskeleton. Cellular and molecular life sciences : CMLS 58(11):1607-1626.
2. May RC & Machesky LM (2001) Phagocytosis and the actin cytoskeleton. Journal of cell science 114(Pt 6):1061-1077.
3. Millard TH, Sharp SJ, & Machesky LM (2004) Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. The Biochemical journal 380(Pt 1):1-17.
4. Small JV, Stradal T, Vignal E, & Rottner K (2002) The lamellipodium: where motility begins. Trends in cell biology 12(3):112-120.
5. Pollard TD & Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453-465.
6. Svitkina TM & Borisy GG (1999) Progress in protrusion: the tell-tale scar. Trends in biochemical sciences 24(11):432-436.
7. Svitkina TM, et al. (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. The Journal of cell biology 160(3):409-421.
8. Paavilainen VO, Bertling E, Falck S, & Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends in cell biology 14(7):386-394.
9. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279(5350):509-514.
10. Nobes CD & Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53-62.
11. Machesky LM & Hall A (1997) Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. The Journal of cell biology 138(4):913-926.
12. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends in cell biology 11(12):471-477.
13. Miki H, Suetsugu S, & Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. The EMBO journal 17(23):6932-6941.
14. Rohatgi R, et al. (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97(2):221-231.
15. Krugmann S, et al. (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Current biology : CB 11(21):1645-1655.
16. Abo A, et al. (1998) PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. The EMBO journal 17(22):6527-6540.
17. Leung IW & Lassam N (1998) Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3. The Journal of biological chemistry 273(49):32408-32415.
18. Miki H, Yamaguchi H, Suetsugu S, & Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408(6813):732-735.
19. Yeh TC, Ogawa W, Danielsen AG, & Roth RA (1996) Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. The Journal of biological chemistry 271(6):2921-2928.
20. Govind S, Kozma R, Monfries C, Lim L, & Ahmed S (2001) Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. The Journal of cell biology 152(3):579-594.
21. Nakagawa H, et al. (2003) IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. Journal of cell science 116(Pt 12):2577-2583.
22. Millard TH, et al. (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. The EMBO journal 24(2):240-250.
23. Disanza A, et al. (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nature cell biology 8(12):1337-1347.
24. Machesky LM & Johnston SA (2007) MIM: a multifunctional scaffold protein. Journal of molecular medicine 85(6):569-576.
25. Yamagishi A, Masuda M, Ohki T, Onishi H, & Mochizuki N (2004) A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. The Journal of biological chemistry 279(15):14929-14936.
26. Lee SH, et al. (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15(2):145-155.
27. Millard TH, Dawson J, & Machesky LM (2007) Characterisation of IRTKS, a novel IRSp53/MIM family actin regulator with distinct filament bundling properties. Journal of cell science 120(Pt 9):1663-1672.
28. Okamura-Oho Y, Miyashita T, & Yamada M (2001) Distinctive tissue distribution and phosphorylation of IRSp53 isoforms. Biochemical and biophysical research communications 289(5):957-960.
29. Miyahara A, Okamura-Oho Y, Miyashita T, Hoshika A, & Yamada M (2003) Genomic structure and alternative splicing of the insulin receptor tyrosine kinase substrate of 53-kDa protein. Journal of human genetics 48(8):410-414.
30. Suetsugu S, et al. (2006) Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. The Journal of cell biology 173(4):571-585.
31. Suetsugu S, et al. (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. The Journal of biological chemistry 281(46):35347-35358.
32. Miki H & Takenawa T (2002) WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac. Biochemical and biophysical research communications 293(1):93-99.
33. Funato Y, et al. (2004) IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer research 64(15):5237-5244.
34. Fujiwara T, Mammoto A, Kim Y, & Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochemical and biophysical research communications 271(3):626-629.
35. Okamura-Oho Y, Miyashita T, Ohmi K, & Yamada M (1999) Dentatorubral-pallidoluysian atrophy protein interacts through a proline-rich region near polyglutamine with the SH3 domain of an insulin receptor tyrosine kinase substrate. Human molecular genetics 8(6):947-957.
36. Bockmann J, Kreutz MR, Gundelfinger ED, & Bockers TM (2002) ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. Journal of neurochemistry 83(4):1013-1017.
37. Soltau M, Richter D, & Kreienkamp HJ (2002) The insulin receptor substrate IRSp53 links postsynaptic shank1 to the small G-protein cdc42. Molecular and cellular neurosciences 21(4):575-583.
38. Abou-Kheir W, Isaac B, Yamaguchi H, & Cox D (2008) Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. Journal of cell science 121(Pt 3):379-390.
39. Lim KB, et al. (2008) The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. The Journal of biological chemistry 283(29):20454-20472.
40. Teodorof C, et al. (2009) SPIN90-IRSp53 complex participates in Rac-induced membrane ruffling. Experimental cell research 315(14):2410-2419.
41. Nourry C, Grant SG, & Borg JP (2003) PDZ domain proteins: plug and play! Science's STKE : signal transduction knowledge environment 2003(179):RE7.
42. Kim E & Sheng M (2004) PDZ domain proteins of synapses. Nature reviews. Neuroscience 5(10):771-781.
43. Soltau M, et al. (2004) Insulin receptor substrate of 53 kDa links postsynaptic shank to PSD-95. Journal of neurochemistry 90(3):659-665.
44. Alpi E, et al. (2009) Channel-interacting PDZ protein, 'CIPP', interacts with proteins involved in cytoskeletal dynamics. The Biochemical journal 419(2):289-300.
45. Hori K, Konno D, Maruoka H, & Sobue K (2003) MALS is a binding partner of IRSp53 at cell-cell contacts. FEBS letters 554(1-2):30-34.
46. Massari S, et al. (2009) LIN7 mediates the recruitment of IRSp53 to tight junctions. Traffic 10(2):246-257.
47. Crespi A, et al. (2012) LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53. Journal of cell science 125(Pt 19):4543-4554.
48. Bear JE, et al. (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109(4):509-521.
49. Chesarone MA & Goode BL (2009) Actin nucleation and elongation factors: mechanisms and interplay. Current opinion in cell biology 21(1):28-37.
50. Goh WI, et al. (2012) mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. The Journal of biological chemistry 287(7):4702-4714.
51. Pellegrin S & Mellor H (2005) The Rho family GTPase Rif induces filopodia through mDia2. Current biology : CB 15(2):129-133.
52. Yang C, Hoelzle M, Disanza A, Scita G, & Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PloS one 4(5):e5678.
53. Abbott MA, Wells DG, & Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 19(17):7300-7308.
54. Oda K, et al. (1999) Identification of BAIAP2 (BAI-associated protein 2), a novel human homologue of hamster IRSp53, whose SH3 domain interacts with the cytoplasmic domain of BAI1. Cytogenetics and cell genetics 84(1-2):75-82.
55. Choi J, et al. (2005) Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. The Journal of neuroscience : the official journal of the Society for Neuroscience 25(4):869-879.
56. Sala C, et al. (2001) Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31(1):115-130.
57. Matus A (2000) Actin-based plasticity in dendritic spines. Science 290(5492):754-758.
58. Hotulainen P & Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. The Journal of cell biology 189(4):619-629.
59. Sawallisch C, et al. (2009) The insulin receptor substrate of 53 kDa (IRSp53) limits hippocampal synaptic plasticity. The Journal of biological chemistry 284(14):9225-9236.
60. Yousaf N, Deng Y, Kang Y, & Riedel H (2001) Four PSM/SH2-B alternative splice variants and their differential roles in mitogenesis. The Journal of biological chemistry 276(44):40940-40948.
61. Riedel H, Wang J, Hansen H, & Yousaf N (1997) PSM, an insulin-dependent, pro-rich, PH, SH2 domain containing partner of the insulin receptor. Journal of biochemistry 122(6):1105-1113.
62. Rui L, Mathews LS, Hotta K, Gustafson TA, & Carter-Su C (1997) Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Molecular and cellular biology 17(11):6633-6644.
63. Rui L & Carter-Su C (1998) Platelet-derived growth factor (PDGF) stimulates the association of SH2-Bbeta with PDGF receptor and phosphorylation of SH2-Bbeta. The Journal of biological chemistry 273(33):21239-21245.
64. Rui L, Herrington J, & Carter-Su C (1999) SH2-B is required for nerve growth factor-induced neuronal differentiation. The Journal of biological chemistry 274(15):10590-10594.
65. Wang J & Riedel H (1998) Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. The Journal of biological chemistry 273(6):3136-3139.
66. Ahmed Z & Pillay TS (2001) Functional effects of APS and SH2-B on insulin receptor signalling. Biochemical Society transactions 29(Pt 4):529-534.
67. Qian X & Ginty DD (2001) SH2-B and APS are multimeric adapters that augment TrkA signaling. Molecular and cellular biology 21(5):1613-1620.
68. Zhang Y, et al. (2006) Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. Journal of cell science 119(Pt 8):1666-1676.
69. Kong M, Wang CS, & Donoghue DJ (2002) Interaction of fibroblast growth factor receptor 3 and the adapter protein SH2-B. A role in STAT5 activation. The Journal of biological chemistry 277(18):15962-15970.
70. Qian X, Riccio A, Zhang Y, & Ginty DD (1998) Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21(5):1017-1029.
71. Suzuki K, et al. (2002) Association of SH2-B to phosphorylated tyrosine residues in the activation loop of TrkB. Research communications in molecular pathology and pharmacology 111(1-4):27-39.
72. Chen L & Carter-Su C (2004) Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Molecular and cellular biology 24(9):3633-3647.
73. Chen L, et al. (2008) SH2B1beta (SH2-Bbeta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Molecular endocrinology 22(2):454-476.
74. Maures TJ, Chen L, & Carter-Su C (2009) Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Molecular endocrinology 23(7):1077-1091.
75. Donatello S, et al. (2007) SH2B1beta adaptor is a key enhancer of RET tyrosine kinase signaling. Oncogene 26(45):6546-6559.
76. Lu WC, Chen CJ, Hsu HC, Hsu HL, & Chen L (2010) The adaptor protein SH2B1beta reduces hydrogen peroxide-induced cell death in PC12 cells and hippocampal neurons. Journal of molecular signaling 5:17.
77. Wang TC, et al. (2011) SH2B1beta regulates N-cadherin levels, cell-cell adhesion and nerve growth factor-induced neurite initiation. Journal of cellular physiology 226(8):2063-2074.
78. Herrington J, Diakonova M, Rui L, Gunter DR, & Carter-Su C (2000) SH2-B is required for growth hormone-induced actin reorganization. The Journal of biological chemistry 275(17):13126-13133.
79. Diakonova M, Gunter DR, Herrington J, & Carter-Su C (2002) SH2-Bbeta is a Rac-binding protein that regulates cell motility. The Journal of biological chemistry 277(12):10669-10677.
80. Rider L, et al. (2009) Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Molecular endocrinology 23(7):1065-1076.
81. Bretscher A (1989) Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. The Journal of cell biology 108(3):921-930.
82. Conrad PA, et al. (1993) Relative distribution of actin, myosin I, and myosin II during the wound healing response of fibroblasts. The Journal of cell biology 120(6):1381-1391.
83. Merilainen J, Palovuori R, Sormunen R, Wasenius VM, & Lehto VP (1993) Binding of the alpha-fodrin SH3 domain to the leading lamellae of locomoting chicken fibroblasts. Journal of cell science 105 ( Pt 3):647-654.
84. Wu H & Parsons JT (1993) Cortactin, an 80/85-kilodalton pp60src substrate, is a filamentous actin-binding protein enriched in the cell cortex. The Journal of cell biology 120(6):1417-1426.
85. Rider L & Diakonova M (2011) Adapter protein SH2B1beta binds filamin A to regulate prolactin-dependent cytoskeletal reorganization and cell motility. Molecular endocrinology 25(7):1231-1243.
86. Lin WF, et al. (2009) SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cellular signalling 21(7):1060-1072.
87. Ziv NE & Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17(1):91-102.
88. Dent EW, et al. (2007) Filopodia are required for cortical neurite initiation. Nature cell biology 9(12):1347-1359.