簡易檢索 / 詳目顯示

研究生: 許書斌
Shu-Bin Hsu
論文名稱: 合成及分析合適於熱療法之奈米顆粒
To synthesize and analyze the nanoparticles suitable for hyperthermia purpose
指導教授: 李志浩
Chih-Hao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 129
中文關鍵詞: 奈米顆粒氧化鐵化學合成高頻升溫鐵硼
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗為製備及分析合適於熱癌症療法之奈米顆粒。首先,使用乙醯基丙酮鐵-Fe(acac)3和十六烷二醇-1,2-hexadecanediol,以熱解法合成氧化鐵,並加入介面活性劑使其為奈米等級的氧化鐵。可藉由控制介面活性劑的濃度,控制成長出4~25 nm的氧化鐵顆粒。也可藉由置入部分小尺寸氧化鐵奈米顆粒做為核種,成長成較大尺寸顆粒。若加入核種顆粒後,在製程上做變化,可再一反應液中,同時製備出不同大小,顆粒尺寸成二集團分佈的奈米顆粒。
      若以乙醯丙酮錳-Mn(acac)3取代乙醯基丙酮鐵,則可合成錳/鐵氧化物奈米顆粒,同時也可藉由置入部分小尺寸氧化鐵奈米顆粒做為核種,成長成較大尺寸錳/鐵氧化物顆粒。
      奈米顆粒的尺寸分布,可藉由XRD和TEM分析。而由於氧化鐵奈米顆粒的結構Fe3O4和γ-Fe2O3不易藉由XRD分析而辨別,因此輔以同步輻射吸收光譜,推斷為60 % Fe3O4和40 %的γ-Fe2O3結構。
      而錳/鐵氧化物的成分由EDX鑑定,結構經XRD分析,錳原子取代原氧化鐵結構中鐵原子的位置,而晶格的結構不改變。
      合成之氧鐵奈米顆粒為超順磁性,但是錳/鐵氧化物奈米顆粒為室溫鐵磁性,且整個磁滯曲線會有位移的現象,推測為奈米顆粒的交換偏移場( exchange bias )現象。
      除了氧化鐵奈米顆粒之外,我們同時也嘗試以化學氧化還原法,合成磁性的硼化鐵奈米顆粒,目前仍無法防止奈米等級的顆粒聚集,不過有些實驗經驗,可供作為製備硼化鐵奈米顆粒的參考。


    In this thesis, we synthesize and analyze the magnetic nanoparticles suitable for cancer therapy.
    Fe(acac)3, 1,2-hexadecanediol, and the surfactant were mixed in phenyl ether and heated to reflux to synthesize the iron oxide nanoparticles. We increase and control the particles size from 4 to 25 nm by changing the amount of the surfactant or adding the 4 nm seed particles in. And we change in process; we can synthesize the nanoparticles with two kinds of size.
    If part of the Fe(acac)3 is substituted by Mn(acac)2, it is iron/manganese oxide nanoparticle.
    The nanoparticles were analyzed by XRD, VSM, and X-ray absorption spectra and we demonstrated that the structure of the iron oxide is 60 % Fe3O4 and 40 % γ-Fe2O3. It is speculated that MnFe2O4 structure is appeared by adding the manganese precursor.
    The magnetic filed of the saturation magnetism increased by adding the manganese element. And the center of M-H loops of the iron/manganese nanoparticles would be shifted up to 50 Oe. We speculated that it is a core/shell structure judged from the Mn L-edge, O K-edge absorption spectra.
    Except the iron oxide nanoparticles, we also try to synthesize the iron boride nanoparticles. Though the iron boride nanoparticles could not be restricted to nanosize, the experimental results could be supplied for reference.

    摘要 --------------------------------------------------------------------------------I Abstract -------------------------------------------------------------------------III 致謝 -------------------------------------------------------------------------------V 圖目錄 ---------------------------------------------------------------------------XI 表目錄 -------------------------------------------------------------------------XXI 第一章、序論 --------------------------------------------------------------------1 第二章、理論與文獻回顧 ------------------------------------------------------6 2.1氧化鐵奈米顆粒的合成 ---------------------------------------------------6 2.1.1 球磨法製備氧化鐵奈米顆粒 (Top-Down) -------------------6 2.1.2 氧化還原法製備奈米顆粒 (Bottom-Up) -------------------10 2.1.2.1 Seed-Mediate法增加(控制)顆粒尺寸 --------------11 2.1.2.2 改變介面活性劑含量,增加顆粒尺寸 ------------14 2.1.2.3 奈米顆粒的形狀 ------------------------------------17 2.2 氧化鐵奈米顆粒結構 ----------------------------------------------------19 2.3 奈米顆粒磁性質 ----------------------------------------------------------21 2.3.1 超順磁性 (superparamagnetic) -------------------------------21 2.3.2 鬆弛時間 (relaxation time) ------------------------------------23 2.3.3 磁性異向能 (magnetic anisotropy) ---------------------------24 2.3.4 單一磁區 (single domain) -------------------------------------25 2.4 磁性奈米顆粒的高頻升溫 ----------------------------------------------27 2.4.1 磁性材料升溫機制 ---------------------------------------------27 2.4.2 顆粒升溫能力和顆粒尺寸關係 ------------------------------29 2.4.3 氧化鐵攙入錳元素對於升溫效應影響 ---------------------30 2.4.4 磁場強度和頻率和顆粒升溫的關係 ------------------------32 2.5 鐵硼顆粒的合成及特性 -------------------------------------------------33 第三章、實驗方法及分析儀器 -----------------------------------------------38 3.1 實驗流程 ------------------------------------------------------------------38 3.1.1 奈米顆粒製備藥品及設備 ------------------------------------38 3.1.2 顆粒製備準備及流程 ------------------------------------------39 3.1.3 顆粒製備流程圖 ------------------------------------------------43 3.2 實驗分析儀器 ----------------------------------------------------------44 3.2.1 X光繞射分析技術 (X-ray diffraction, XRD) -------------44 3.2.1.1 X光繞射分析基本原理 ------------------------------45 3.2.2 能量分散光譜儀(EDX)量測 ----------------------------------48 3.2.3穿透式電子顯微鏡TEM ----------------------------------------48 3.2.4 樣品震盪磁測儀VSM ------------------------------------------51 3.2.5 吸收光譜 ---------------------------------------------------------53 3.2.6 奈米顆粒升溫儀器 ---------------------------------------------54 3.2.6.1 奈米顆粒升溫機制 ---------------------------------54 3.2.6.2 線圈+磁性材料產生磁場 ---------------------------56 3.3.3 奈米顆粒升溫量測 ---------------------------------------------58 第四章、結果與討論 ----------------------------------------------------------61 4.1 顆粒成長 -------------------------------------------------------------------61 4.1.1 顆粒成長(growth)時間 ----------------------------------------61 4.1.2 控制(增加)顆粒尺寸 -------------------------------------------68 4.1.2.1 增加介面活性劑濃度 --------------------------------68 4.1.2.2 置入小顆粒作為核種(seed-mediate) --------------74 4.1.2.3 置入摻錳小顆粒作為核種(seed-mediate) ---------80 4.2 顆粒結構 -------------------------------------------------------------------82 4.2.1 鐵氧化物結構 ---------------------------------------------------82 4.2.2 摻入錳之錳/鐵氧化物結構 -----------------------------------83 4.3 奈米顆粒吸收光譜 -------------------------------------------------------92 4.3.1 奈米顆粒Fe L-edge吸收光譜 --------------------------------92 4.3.1.1 氧化鐵奈米顆粒 --------------------------------------92 4.3.1.2 掺錳氧化鐵奈米顆粒 ------------------------------93 4.3.2 奈米顆粒O K-edge、Mn L-edge吸收光譜 ---------------93 4.3.2 奈米顆粒O K-edge吸收光譜 -------------------------------97 4.3.2.1 氧化鐵奈米顆粒O K-edge 吸收光譜 -----------97 4.3.2.2摻錳氧化鐵奈米顆粒O K-edge 吸收光譜 ------98 4.4 奈米顆粒磁特性 --------------------------------------------------------101 4.5 奈米顆粒升溫效應 -----------------------------------------------------107 第五章、鐵硼顆粒-------------------------------------------------------------110 5.1.1 鐵硼奈米顆粒現況 ---------------------------------------------------110 5.1.2 鐵硼奈米顆粒合成實驗結果與討論--------------------------------110 5.1.2 未來建議-----------------------------------------------------------------113 第六章、結論-------------------------------------------------------------------118

    [1] http://www.doh.gov.tw/cht2006/index_populace.aspx 行政院衛生署
    統計資料
    [2] http://www.uic.edu/classes/bios/bios100/lecturesf04am/lect08.htm
    [3] Pedro Tartaj, Marıa del Puerto Morales, Sabino Veintemillas-Verdaguer, Teresita Gonzalez-Carreno, and Carlos J Serna “The preparation of magnetic nanoparticles for applications in biomedicine” J. Phys. D: Appl. Phys. 36 (2003) 182-197
    [4] http://www.itb.cnr.it/flex/cm/pages/ServeBLOB.php3/L/UK/
    IDPagina/37
    [5] Li-Li Wang and Ji-Sen Jiang, “Preparation of α-Fe2O3 nanoparticles by high-energy ball milling” Phys. B 390 (2007) 23-27
    [6] Gerardo F. Goya, “Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling” Solid state commun. 130 (2004) 783-787
    [7] Shouheng Sun and Hao Zeng, “Size-Controlled Synthesis of Magnetite Nanoparticles” J. Am. Chem. Soc. 124 (2002) 8204-8205
    [8] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang, and Guanxiong Li, “Monodisperse MFe2O4 (M= Fe, Co, Mn) Nanoparticles” J. Am. Chem. Soc. 126 (2004) 273-279
    [9] Jongnam Park, Eunwoong Lee, Nong-Moon Hwang, Misun Kang, Sung Chul Kim, Yosun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, and Taeghwan Hyeon, “monodisperse magnetic nanoparticles 6 nm ~ 13 nm” Angew. Chem. Int. Ed. 44 (2005) 2872-2877
    [10] Taeghwan Hyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na, “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process” J. Am. Chem. Soc. 123 (2001) 12798-12801
    [11] Satoru Momose, Hiroyoshi Kodama, Takuya Uzumaki and Atsushi Tanaka, “Fine Tuning of the Sizes of FePt Nanoparticles” Jpn. J. Appl. Phys 44 (2005) 1147–1149
    [12] 吳宗峰 氧化鐵奈米顆粒之合成鑑定與磁性質 國立清華大學
    碩士論文 (2005)
    [13] Jinwoo Cheon, Nam-Jung Kang, Sang-Min Lee, Jae-Hyun Lee, Ji-Hyun Yoon, and Sang Jun Oh “Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals” J. Am. Chem. Soc. 126 (2004) 1950-1951
    [14] Hao Zeng, Philip M. Rice, Shan X. Wang, and Shouheng Sun, “Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles” J. Am. Chem. Soc. 126 (2004) 11458-11459
    [15] http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html
    [16] http://www.ltm-cnrs.fr/Elaboration-et-etude-d-oxydes-de.html
    [17] Natl. Bur. Stand. (U.S.) Monogr 25, 5, 31 (1967)
    [18] Schulz. D., McCarthy. G., North Dakota State University, Fargo, North Darkota, USA, ICDD Grant-in-Aid, (1987)
    [19] Diandra L. Leslie-Pelecky and Reuben D. Rieke, “Magnetic Properties of Nanostructured Materials” Chem. Mater. 8 (1996) 1770-1783
    Néel, L. C. R. Acad. Sci. 228 1949 664
    [20] http://www.city.ac.uk/sems/mathematics/research/nanostructures/
    topics/domain.html
    [21] http://pkukmweb.ukm.my/~rahim/magnetic%20lecture.htm
    [22] http://www.egglescliffe.org.uk/physics/chur/palaeomag/palaeomag.
    html
    [23] 王子瑜、曹□光 布朗運動、郎之萬方程式、與布朗動力學 物理雙月刊物理雙月刊(廿七卷三期)2005年6月 p. 456-460
    [24] http://en.wikipedia.org/wiki/Brownian_motion
    [25] Ming Ma, Ya Wu, Jie Zhou, Yongkang Sun, Yu Zhang, and Ning Gu, “Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field” J. Magn. Magn. Mater. 268 (2004) 33-39
    [26] Jyotsnendu Giri, Pallab Pradhan, T. Sriharsha and D. Bahadur “Preparation and investigation of potentiality of different soft ferrites
    for hyperthermia applications” J. Appl. Phys. 97 (2005) 916-1~916-3
    [27] Seongtae Bae1, Sang Won Lee1, Y. Takemura, E. Yamashita, J. Kunisaki, Shayne Zurn, and Chul Sung Kim, “Dependence of Frequency and Magnetic Field on Self-Heating Characteristics of NiFe2O4 Nanoparticles for Hyperthermia” Appl. Phys. Lett. 89 (2006) 252503-1~252503-3
    [28] http://www.srrc.com.tw
    [29] 劉玉迪 利用離子佈植法摻雜錳於n型氮化鎵之稀磁半導體性質研究 國立清華大學碩士論文 (2006)
    [30] http://memo.cgu.edu.tw/microscope/rules.htm
    [31] http://140.123.72.100/all.htm
    [32] 王紹宇 X光近緣吸收光譜修正的研究:MgO 國立臺灣師範大學碩士論文 (2006)
    [33] Diandra L. Leslie-Pelecky and Reuben D. Rieke, “Magnetic Properties of Nanostructured Materials” Chem. Mater. 1996, 8, 1770-1783
    [34] I. Hilger, R. Hergt and W.A. Kaiser, “Use of magnetic nanoparticle heating in the treatment of breast cancer” IEE Proc.-Nanobiotechnol. 152, (2005) 33-39
    [35] P. Guardia, B. Batlle-Brugal, A. G. Roca, O. Iglesias, M. P. Morales, C. J. Serna, A. Labarta and X. Batlle, “Surfactant effects in monodisperse magnetite nanoparticles of controlled size” Submitted to J. Magn. Magn. Mater.
    [36] Ling Zhang, Rong He, and Hong-Chen Gu “Oleic acid coating on the monodisperse magnetite nanoparticles” Appl. Surf. Sci. 253 (2006) 2611–2617
    [37] Chun-Rong Lina, Ray-Kuang Chiangb, Jiun-Shen Wang and Ti-Wen Sung, “Magnetic properties of monodisperse iron oxide nanoparticles” J. Appl. Phys. 99 (2006) 08N710-1~08N710-3
    [38] Jongnam Park, Kwangjin An, Yosun Hwang, Je-Geun Park, Han-Jin Noh, Jae-Young Kim, Jae-Hoon Park, Nong-Moon Hwang And Taeghwan Hyeon “Ultra-large-scale syntheses of monodisperse nanocrystals” Nature Mater. 3 (2004) 891-895
    [39] L. Chitu, M. Jergel, E. Majkova, S. Luby, I. Capek, A. Satka, J. Ivan, J. Kovac and M. Timko “Structure and magnetic properties of CoFe2O4 and Fe3O4 nanoparticles” Mater. Sci. Engineer. C xx (2006) xxx–xxx
    doi: 10.1016/j.msec.2006.07.036.
    [40] Taeghwan Hyeon, Su Seong Lee, Jongnam Park, Yunhee Chung, and Hyon Bin Na, “Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process” J. Am. Chem. Soc. 123 (2001) 12798-12801
    [41] Baoping Jia and Lian Gao, “Selected-Control Synthesis and the Phase Transition of Fe3O4 and α-FeOOH in Ethanol/Water Media“ J. Am. Chem. Soc. 89 (2006) 1739–1741
    [42] Nikhil R. Jana, Yongfen Chen, and Xiaogang Peng, “Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach” Chem. Mater. 16 (2004) 3931-3935
    [43] Taeghwan Hyeon, Yunhee Chung, Jongnam Park, Su Seong Lee, Young-Woon Kim, and Bae Ho Park, “Synthesis of Highly Crystalline and Monodisperse Cobalt Ferrite Nanocrystals” J. Phys. Chem. B 106 (2002) 6831-6833
    [44] Jinwoo Cheon, Nam-Jung Kang, Sang-Min Lee, Jae-Hyun Lee, Ji-Hyun Yoon, and Sang Jun Oh, “Shape Evolution of Single-Crystalline Iron Oxide Nanocrystals” J. Am. Chem. Soc. 126 (2004) 1950-1951
    [45] A.R.B. de Castroa, P.T. Fonsecaa, J.G. Pachecoa, J.C.V. da Silvaa, E.G.L.da Silvaa, M.H.A. Santanac “L-edge inner shell spectroscopyof nanostructured Fe3O4” J. Magn. Magn. Mater. 233 (2001) 69-73
    [46] J. P. Crocombette, M. Pollak, F. Jollet. N. Thromat, amd M Gautier-Soyer, “X-ray-absorption spectroscopy at the L2,3 threshold iron oxides” Phys. Rev. B. 52 (1995) 3143-3150
    [47] C. K. Yang, J. W. Chiou, H. M. Tsai, C. W. Pao, J. C. Jan, S. C. Ray, C. L. Yeh, K. C. Huang, H. C. Hsueh, W. F. Ponga, M.-H. Tsai, H. H. Hsieh, H. J. Lin, T. Y. Hou and J. H. Hsu, “Electronic structure and magnetic propertyes of Al-doped Fe3O4 films studied by x-ray absorption and magnetic circular dichroism” Appl Phys Lett. 86 (2005) 062504-1~ 062504-1
    [48] Ondřej Šipr and Hubert Ebert, “Theoretical Fe L2,3- and K-edge x-ray magnetic circular dichroism spectra of free iron clusters” Phys. Rev. B 72 (2005) 134406-1~134406-11
    [49] R.H. Kodama “Magnetic nanoparticles” J. Magn. Magn. Mater 200 (1999) 359-372
    [50] Tanushree Bala, C. Raj Sankar, Marina Baidakova, Vladimir Osipov, Toshiaki Enoki, P. A. Joy, B. L. V. Prasad, and Murali Sastry, “Cobalt and Magnesium Ferrite Nanoparticles: Preparation Using Liquid Foams as Templates and Their Magnetic Characteristics” Langmuir 21 (2005) 10638-10643
    [51] Feng Li, Junjie Liu, David G. Evans, and Xue Duan “Stoichiometric Synthesis of Pure MFe2O4 (M = Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors“ Chem. Mater. 16 (2004) 1597-1602
    [52] J.-S. Junga, J.-H. Lim, K.-H. Choi, S.-L. Oh, Y.-R. Kim, and S.-H. Lee, D. A. Smith, K. L. Stokes, L. Malkinski, and C. J. O’Connor “CoFe2O4 nanostructures with high coercivity” J. Appl. Phys. 97 (2005) 10F306-1- 10F306-3
    [53] S . Nafis, G.C. Hadjipanayis, C.M. Sorensen and K.J. Klabunde,
    “Magnetic Properties of Fine Fe-B Particles” IEEE Trans. Magne. 25 (1989) 3641-3643
    [54] Q. A. Pankhurst, Á. Y. Martínez and Luis Fernández Barquín “Interfacial exchange pinning in amorphous iron-boron nanoparticles” Phys. Rev. B 69 (2004) 212401-1 - 212401-4
    [55] S. Linderoth and S. Mørup “Chemical prepared amorphous Fe-B particles: influence of pH on the composition” J. Appl. Phys. 67 (1990) 4472 - 4474
    [56] Zheng Hu, Yuanfu Hsia, Jianguo Zheng, Jianyi Shen, Qijie Yan, and Lemei Dai, “A study of Fe-Ni-B ultrafine alloy particles produced by reduction with borohydride” J. Appl. Phys 70 (1991) 436 - 438
    [57] L. Zhang and A. Manthiram, “Chains composed of nanosize metal particles and identifying the factors driving their formation” Appl. Phys. Lett. 70 (1997) 2469-2471
    [58] R. D. Zysler, C. A. Ramos, H. Romero, and A. Ortega
    “Chemical synthesis and characterization of amorphous Fe-Ni-B magnetic nanoparticles” J. Mater. Sci. 36 (2001) 2291-2294
    [59] Ge Yi, Bangwei Zhang, Lijun Wu, and Qiaoqin Yang, “Crystallization during isothermal annealing Fe-Ni-P-B nanosize amorphous powders preparation by chemical reduction” Physica B 216 (1995) 103-110
    [60] Y. Sasaki, S. Tsuboi, N. Kasajima, S. Kitahata, and M. Kishimoto
    “Magnetic and Structural Properties of Nano-Sized Sm-FeCo-B Particles” IEEE Trans Magne, 37 (2001) 2204-2206
    [61] S. Nafis, G. C. Hadjipanayis, M.Sorensen, and K. J. Klabunde “Magnetic properties of ultrafine Fe-Ni-B particles” J. Appl. Phys. 67 (1990) 4478-4480
    [62] E. De Biasi, R.D. Zysler, C.A. Ramos, and H. Romero, “Magnetization enhancement at low temperature due to surface ordering in Fe–Ni–B amorphous nanoparticles” Physica B 320 (2002) 203-205
    [63] Yi Ge, Guo Ying, Zhang Bangwei, Wang Lingling, OuYang Yifang, and Liao Shuzhi, “Preparation and thermal properties of amorphous Fe–W–B alloy nano-powders” J. Mater. Process. Tech. 74 (1998) 10-13
    [64] L. Yiping ", G.C. Hadjipanayis ", C.M. Sorensen b and K.J. Klabunde, “Size effects on the magnetic properties of Fe-Co-B powders” J. Magn. Magn. Mater. 104-107 (1992) 1545-1546
    [65] Glyn D. Forster, Luis FernaÂndez BarquõÂn, Robert L. Bilsborrow, Quentin A. Pankhurst, Ivan P. Parkin and W. Andrew Steera, “Sodium borohydride reduction of aqueous iron-zirconium solutions: chemical routes to amorphous and nanocrystalline Fe-Zr-B alloys” J. Mater. Chem. 9 (1999) 2537-2544
    [66] A. Yedra, L. Fernandez Barquin, R. Garcia Calderon, Q.A. Pankhurst, and J.C. Gomez Sal, “Survey of conditions to produce metal-boron amorphous and nanocrystalline alloys by chemical reduction” J. Non-Cryst. Solid 297 (2001) 20-25
    [67] L. Zhang and A. Manthiram, “Synthesis and characterization of chains composed of nanometer size Fe-Cr-B particles” J. Magn. Magn. Mater. 168 (1997) 86-93
    [68] Y. Haik, J. Chatterjee and Ching Jen Chen, “Synthesis and stabilization of Fe-Nd-B Nanoparticles for biomedical applications” J Nanoparticle Research 7 (2005) 675-679

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE