簡易檢索 / 詳目顯示

研究生: 何家齊
Chai-Chi, Ho
論文名稱: 醣化及磷酸化對普昂胜肽構形及其形成澱粉樣沈澱的影響
Effects of Glycosylation and Phosphorylation on the Conformation and Amyloidogenesis of the Prion Protein
指導教授: 余靖 博士
陳佩燁 博士
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 80
中文關鍵詞: 普昂蛋白質澱粉樣沈澱磷酸化醣化
外文關鍵詞: prion protein, amyloid fiber, phosphorylation, glycosylation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 普昂疾病(prion disease)是一種腦神經退化疾病,於許多動物及人類都有發現,例如發生於牛群的狂牛病,發生於人類的庫賈氏症…等等,患者共同特徵為運動不協調性及在患者腦切片中發現有海綿狀空隙般的空洞。而其疾病的病原體為蛋白質,由自然態蛋白質(PrPC)轉變成非自然態蛋白質(PrPSc),但是,其轉變機制仍是個謎。之前的研究已經發現如果加入單醣於大頰鼠普昂蛋白序列108-144則會對形成澱粉樣沈澱過程有所影響,如果加入□a-N-乙醯半乳醣胺(□a-GalNAc)會抑制澱粉樣沈澱的形成,但有趣的是□b-N-乙醯葡萄醣胺(□b-GlcNAc)卻沒有卻沒有如此大的影響,表示澱粉樣沈澱具有『單醣專一性』。為了更深入了解其影響原因,我們合成了兩個非自然的單醣胜肽(□b-N-乙醯半乳醣胺(□b-GalNAc)和□a-N-乙醯葡萄醣胺(□a-GlcNAc))。發現□a-殊碳醣異構物(□a-GalNAc,□a-GlcNAc)皆具有抑制澱粉樣沈澱的效用,但□-殊碳醣異構物卻沒有。並且由核磁共振光譜看出Ser-135和Arg-136附近的位置對形成澱粉樣沈澱具有相當的重要性。除此之外,我們還比較了磷酸化和醣化對對普昂胜肽構形及其形成澱粉樣沈澱的影響。


    Prion disease is a neurodegenerative disorder. The prion formation, resulting from a structural conversion of the prion protein from the cellular form (PrPC) to the pathogenic isoform (PrPSc), is the culprit of the malady. A posttranslational process on the prion protein has been implicated in the prion formation during the development of prion disease. However, what the modification is and how the modification works remain elusive. It has been found that adding one single sugar on the prion peptide (sequence 108-144) can affect the structural conversion of the modified peptide and the following amyloid fibril formation. Interestingly, this effect is sugar-specific. Introducing an □a-GalNAc to Ser-135 of the prion peptide could suppress the fibrillization while adding a □b-GlcNAc did not yield the same effect. In order to understand the origin of the effect, we performed a series glycosylations with these two sugars and another two non-native isomers □b-GalNAc, and □a-GlcNAc and compared their effects on the fibrillization of the prion peptide. We found that the anomeric position is the origin of the inhibition. Either □a-GalNAc or □a-GlcNAc has more prominent effect on the conformational energy of the peptide and inhibits the assembly of the peptide to form amyloid. The NMR results showed that the region of Ser-135 and Arg-136 plays the critical point for amyloidogenesis. We also compared the influence of glycosylation and phosphorylation on fibrillization.

    Abbreviations i Chapter 1 Introduction 1.1 Introduction to prion disease 1 1.2 The structural studies of PrP 4 1.3 The mechanism studies of amyloid 7 1.4 Glycosylation of proteins 10 1.5 The mucin-type O-linked glycoprotein 13 1.6 The O-GlcNAc type glycoprotein 14 1.7 Previous studies about the effects of sugars on protein conformation 15 1.8 The aim of this project 16 Chapter 2 Materials and Methods 2.1 Materials 18 2.1.1 Water 18 2.1.2 Chemicals 18 2.1.3 Buffer solution 20 2.2 Method 21 2.2.1 Peptide synthesis, purification, identification 21 2.2.2 The concentration standard curve of PrP(108-144) 25 2.2.3 Fibrillization time course was monitored by Circular dicroism (CD) spectroscopy 25 2.2.4 Time course of fibrillization was monitored by Fluorescence microscopy 28 2.2.5 Two-dimensional NMR spectroscopy in solution 29 2.2.6 Transmission Electron Microscope (TEM) 30 Chapter 3 Results and Discussion (I): Purification and Identification of Peptides 3.1 Cleavage and deprotection of peptides from resin 31 3.2 Peptide purified by HPLC 32 3.3 Identification of peptides by mass spectrometry 36 3.4 The concentration standard curve of PrP(108-144) 37 Chapter 4 Results and Discussion (II): The kinetics of amyloid fibrillization and solution structure of peptides 4.1 Fibrillization and structure of PrP(108-144) 40 4.1.1 PrP(108-144) is self-assembled from random coil to fibril 40 4.1.2 Fibrillization process is depending on peptide concentration 43 4.1.3 Fibrillization process is depending on incubation temperature 45 4.1.4 Time course of PrP(108-144) fibrillization with seeding 46 4.1.5 The critical concentration of PrP(108-144) 51 4.1.6 The 2D-TOCSY spectra of PrP(108-144) 52 4.2 Fibrillization and structure of S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b-GalNAc 53 4.2.1 Time course of amyloid formation for S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b- GalNAc 53 4.2.2 The effect of glycosylated peptide of S135-a-GalNAc, S135-b-GlcNAc, S135-a-GlcNAc, and S135-b-GalNAc on the structure in solution 57 4.3 Time course of amyloid formation for R136G 61 4.4 Fibrillization and structure of S135-p 62 4.4.1 Time course of amyloid formation and structure for S135-p 62 4.4.2 The 2D-TOCSY spectra of S135-p 65 Chapter 5 Conclusions and Future Outlooks 66 References 69 Mass spectra 74

    3r LH (1993) Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2: 404-410

    Amy Hamilton Andreotti DK (1993) The effects of glycosylation on peptide backbone conformation. J. Am. Chem. Soc. 115: 3352-3353

    Apetri AC, Surewicz WK (2002) Kinetic intermediate in the folding of human prion protein. J. Biol .Chem. 277: 44589-44592

    Arnold CS JG, Cole RN, Dong DL, Lee M, Hart GW. (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J. Biol. Chem. 271: 28741

    Bouma B, Kroon-Batenburg LM, Wu YP, Brunjes B, Posthuma G, Kranenburg O, de Groot PG, Voest EE, Gebbink MF (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J. Bio. Chem. 278: 41810-41819

    Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br. Med. Bull. 66: 1-20

    Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J. Biol. Chem. 275: 29179-29182

    Donne DG, Viles JH, Groth D, Mehlhorn I, James TL, Cohen FE, Prusiner SB, Wright PE, Dyson HJ (1997) Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible. Proc. Natl. Acad. Sci. USA 94: 13452-13457

    Gajdusek DC, Gibbs CJ, Alpers M (1966) Experimental transmission of a Kuru-like syndrome to chimpanzees. Nature 209: 794-796

    Gajdusek DC, Gibbs CJ, Jr. (1971) Transmission of two subacute spongiform encephalopathies of man (Kuru and Creutzfeldt-Jakob disease) to new world monkeys. Nature 230: 588-591

    Gajdusek DC, Zigas V (1959) Kuru; clinical, pathological and epidemiological study of an acute progressive degenerative disease of the central nervous system among natives of the Eastern Highlands of New Guinea. Am. J. Med. 26: 442-469

    Griffith LS, Mathes M, Schmitz B (1995) Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J. Neurosci. Res. 41: 270-278

    Harper JD, Lansbury PT, Jr. (1997) Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu. Rev. Biochem. 66: 385-407

    Harrison PM, Bamborough P, Daggett V, Prusiner SB, Cohen FE (1997) The prion folding problem. Curr. Opin. Struct. Biol. 7: 53-59

    Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu. Rev. Biochem. 66: 315-335

    Hindsgaul MFaO (2000) Molecular and cellular Glycobiliogy.

    Horwich AL, Weissman JS (1997) Deadly conformations--protein misfolding in prion disease. Cell 89: 499-510

    James TL, Liu H, Ulyanov NB, Farr-Jones S, Zhang H, Donne DG, Kaneko K, Groth D, Mehlhorn I, Prusiner SB, Cohen FE (1997) Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc. Natl. Acad. Sci. USA 94: 10086-10091

    Kaneko K, Ball HL, Wille H, Zhang H, Groth D, Torchia M, Tremblay P, Safar J, Prusiner SB, DeArmond SJ, Baldwin MA, Cohen FE (2000) A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J. Mol. Biol. 295: 997-1007

    Kaneko K, Peretz D, Pan KM, Blochberger TC, Wille H, Gabizon R, Griffith OH, Cohen FE, Baldwin MA, Prusiner SB (1995) Prion protein (PrP) synthetic peptides induce cellular PrP to acquire properties of the scrapie isoform. Proc. Natl. Acad. Sci. USA 92: 11160-11164

    Kelly WG, Dahmus ME, Hart GW (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268: 10416-10424
    Kusumoto Y, Lomakin A, Teplow DB, Benedek GB (1998) Temperature dependence of amyloid beta-protein fibrillization. Proc. Natl. Acad. Sci. USA 95: 12277-12282

    Kuwata K, Kamatari YO, Akasaka K, James TL (2004) Slow conformational dynamics in the hamster prion protein. Biochemistry 43: 4439-4446

    M Hasegawa MM-K, K Takio, M Suzuki, K Titani and Y Ihara (1992) Protein sequence and mass spectrometric analyses of tau in the Alzheimer's disease brain. J. Biol. Chem. 267: 17047-17054

    MacPhee CE, Dobson CM (2000) Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. J. Mol. Biol. 297: 1203-1215

    Maho Morishima-Kawashima MH, Koji Takio , Masami Suzuki , Hirotaka Yoshida , Koiti Titani , Yasuo Ihara (1995) Proline-directed and Non-proline-directed Phosphorylation of PHF-tau. J. Biol. Chem. 270: 823-829

    Manning MC, Illangasekare M, Woody RW (1988) Circular dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta turns. Biophys. Chem. 31: 77-86

    Murphy RM (2002) Peptide aggregation in neurodegenerative disease. Annu. Rev. Biomed. Eng. 4: 155-174

    Neustroev KN GA, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA. (1993) Effect of modification of carbohydrate component on properties of glucoamylase. FEBS Lett. 316: 157-160

    Nunziante M, Gilch S, Schatzl HM (2003) Prion diseases: from molecular biology to intervention strategies. Chem. Biochem. 4: 1268-1284

    O'Conner SE, Imperiali B (1998) A molecular basis for glycosylation-induced conformational switching. Chem. Biol. 5: 427-437

    O'Connor SEI, B. (1997) A molecular basis for glycosylation-induced conformational switching. J. Am. Chem. Soc. 119: 2295-2296

    Oh-eda M HM, Hattori K, Kuboniwa H, Kojima T, Orita T, Tomonou K, Yamazaki T, Ochi N. (1990) O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. J. Biol. Chem. 265: 11432-11435

    Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90: 10962-10966

    Pei-Yeh Chen C-CL, Yin-Ting Chang, Su-Ching Lin, and Sunney I. Chan (2002) One O-linked sugar can affect the coil-to- structural transition of the prion peptide. Proc. Natl. Acad. Sci. USA 99: 12633-12638

    Plaza del Pino IM, Ibarra-Molero B, Sanchez-Ruiz JM (2000) Lower kinetic limit to protein thermal stability: a proposal regarding protein stability in vivo and its relation with misfolding diseases. Proteins 40: 58-70

    Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136-144

    Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515-1522
    Safar J, Roller PP, Gajdusek DC, Gibbs CJ, Jr. (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J. Biol. Chem. 268: 20276-20284

    Shaw P, Freeman J, Bovey R, Iggo R (1996) Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 12: 921-930

    Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93: 203-214

    Tagliavini F, Prelli F, Verga L, Giaccone G, Sarma R, Gorevic P, Ghetti B, Passerini F, Ghibaudi E, Forloni G, et al. (1993) Synthetic peptides homologous to prion protein residues 106-147 form amyloid-like fibrils in vitro. Proc. Natl. Acad. Sci. USA 90: 9678-9682

    Taraboulos A, Rogers M, Borchelt DR, McKinley MP, Scott M, Serban D, Prusiner SB (1990) Acquisition of protease resistance by prion proteins in scrapie-infected cells does not require asparagine-linked glycosylation. Proc. Natl. Acad. Sci. USA 87: 8262-8266

    Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33: 151-208

    Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291: 2376-2378

    Wille H, Michelitsch MD, Guenebaut V, Supattapone S, Serban A, Cohen FE, Agard DA, Prusiner SB (2002) Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA 99: 3563-3568

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE