研究生: |
吳仲傑 Chung-Chieh Wu |
---|---|
論文名稱: |
應用幾何分解於自由曲面加工之最佳化程序規劃 Optimized Operation Planning in Free Form Machining with Geometric Decomposition |
指導教授: |
瞿志行
Chih-Hsing Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 自由曲面 、作業規劃 、最佳化 、多軸加工 、電腦輔助製程規劃 、電腦輔助製造 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自由曲面目前已被廣泛使用於汽車、航太與模具業,在產品設計上此類幾何提供了極佳的造型能力,然而其加工製造也因此變得複雜。多軸數值控制切削為其主要的加工方式,此項製程的規劃工作極為困難,以往文獻亦缺乏完整性的探討。有鑑於此,本論文提出一套共通性的計算架構,以多軸銑削作業規劃(operation planning)中的加工區域分解,刀具選擇與兩者之組合為分析重點,建立加工成本最佳化的數學模式,並提出對應演算法利用最少的計算次數求得最佳的切削順序與刀具組合。本研究並將提出之計算法則成功地運用至三維凹穴與輪胎模具的加工規劃上,以驗證其共通性與計算效率。並配合幾何模擬程式加以實作,自動產生刀具路徑程式碼,進行切削過程的動態模擬。本研究結果提供有效方法進行電腦輔助製程規劃(CAPP)與電腦輔助製造(CAM)之整合,並大幅提高多軸加工的生產效率。
[1] Choi, B.K. and Jun, C.S., “Ball-End Cutter Interference Avoidance in NC Machining of Sculptured Surfaces,” Computer-Aided Design, Vol. 21, pp. 371-378, 1989.
[2] Lee, Y.S. and Chang, T., “CASCAM □ An Automated System for Sculptured Surface Cavity Machining,” Computers in Industry, Vol. 16, pp. 321-342, 1991.
[3] Lee, Y.S., Yawei, M., and George, J., “Rolling-Ball Method and Contour Marching Approach to Identifying Critical Regions for Complex Surface Machining,” Computers in Industry, Vol.41, pp. 163-180, 2000.
[4] Lin, R.S. and Koren, Y., “Efficient Tool-Path Planning for Machining Free-Form Surface,” Transactions of the ASME, Vol.118, pp. 20-28, 1996.
[5] Lawrence, B. and Bruce, G., “Classification in Vehicle Routing and Scheduling,” Networks, Vol. 11, pp. 97 - 108, 1981.
[6] Lawrence, B., Bruce, G., Arjang Assad, and Michael Ball, “Routing and Scheduling of Vehicles and Crews - the State of Art,” Computers & Operations Research, Vol. 10, No. 2, pp. 62 - 212, 1983.
[7] Han, B., “Approximation Properties and Construction of Hermite Interpolants and Biorthogonal Multiwavelets,” Journal of Approximation Theory, Vol.100, pp. 18-53, 2001.
[8] Bala, M. and Chang, T., “Automatic Cutter Selection and Cutter Path Generation for Prismatic Parts,” International Journal of Production Research, Vol. 29, No.11, pp. 2163-2176, 1991.
[9] Hinduja S. and Sandiford D., “An Optimum Two-Tool Solution for Milling 2.5D Features from Technological and Geometric Viewpoints,” Annals of the CIRP, pp. 77-80, 2004.
[10] Held, M., Lukacs, G., and Andor, L., “Pocket Machining Based on Contour Parallel Machining,” Computer-Aided Design, Vol.26, pp. 189-203, 1994.
[11] Lee, Y.S. and Chang, T.C., “Application of Computational Geometry in Optimizing 2.5D and 3D NC Surface Machining,” Computer in Industry, Vol. 26, pp. 41-59, 1995.
[12] Chen, Y.H., Lee Y.S., and Fang, S.C., “Optimal Cutter Selection and Machining Plane Determination for Process Planning and NC Machining of Complex Surfaces,” Journal of Manufacturing Systems, Vol. 17, No.5, pp. 371-388, 1998.
[13] D’Souza, R.M., Sequin, C., and Wright, P.K., “Automated Tool Sequence Selection for 3-Axis Machining of Free-Form Pockets,” Computer-Aided Design, Vol.36, pp. 595-605, 2004.
[14] ACIS Geometric Modeller, API Reference, Spatial Technology, 2000.
[15] Vericut, CGTech, www.cgtech.com, 2005.
[16] Chu, C.H., Song, M.C., and Luo, V.C., “Computer Aided Parametric Design for 3D Tire Mold Production,” to appear, Computers in Industry, 2005.
[17] ILOG CPLEX, API Reference, http://www.ilog.com/products/cplex/, 2005.