研究生: |
謝佩芳 Hsieh, Pei-Fang |
---|---|
論文名稱: |
運用氣相電泳分析技術作為以溶劑熱法生成功能膠體奈米材料之研究 Understanding Solvothermal Synthesis of Functional Nanomaterial Colloids using Gas-phase Electrophoresis |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
呂世源
Lu, Shih-Yuan 胡啟章 Hu, Chi-Chang 徐盛耀 Hsu, Sheng-Yaw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 膠體 、奈米粒子 、金屬-有機骨架 、葡萄糖衍生碳球 、電噴灑式氣相奈米粒子電移動度分析儀 |
外文關鍵詞: | colloid, nanoparticle, metal-organic framework, glucose-derived carbon nanosphere, ES-DMA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們以電噴灑式氣相奈米粒子電移動度分析儀 (Electrospray-differential mobility analyzer, ES-DMA) 此氣相電泳法作為基礎,建立一高解析度的分析技術與方法,用於進行溶劑熱法製備功能膠體奈米材料之研究。藉由其他儀器的數據輔助,加以分析膠體材料合成時所涉及的配方化學以及界面化學效應,此有助於後續開發其他的新型功能膠體材料以優化材料的性能表現,進一步用於催化或是能源環境之應用。
首先,本研究的第一部分,我們針對金屬-有機骨架 (Metal-organic framework, MOF) 膠體粒子於溶劑熱合成過程中之生長情形進行研究。我們選用HKUST-1此銅基MOF作為代表性材料,並透過ES-DMA量測所得之數據,探討隨著合成溫度、合成時間以及有機配體前驅物濃度等合成條件改變,其電移動度粒徑分布與數量濃度等基本性質的變化。我們分別利用粉末X光繞射儀 (X-ray diffraction analyzer, XRD) 和比表面積與孔隙度分析儀 (Brunauer-Emmett-Teller analyzer, BET) 量測MOF材料的結晶程度與孔洞結構變化情形,以提供相輔之分析結果,以了解合成參數與材料特性之間的關聯性。結果指出,HKUST-1膠體奈米粒子的電移動度粒徑、結晶度、比表面積與孔體積,都會隨著合成時間增加而提升,並呈現正相關趨勢,進一步提高合成溫度時,也能夠觀察到類似現象且更加明顯。此外,透過改變有機配體前驅物濃度,結果顯示電移動度粒徑會隨著前驅物濃度增加而提升,綜合上述可歸納出電移動度粒徑與結晶度呈正相關,而結晶度增加也會使得材料比表面積增加。同時,我們也將合成的HKUST-1材料於常溫常壓 (1 atm, 35℃) 進行CO2吸附能力量測,由結果得知其電移動度粒徑大小大致與CO2吸附量呈一次方的正比關係。因此,我們除了能透過控制合成條件製備不同尺寸大小、晶徑與比表面積的HKUST-1奈米粒子,也能藉由ES-DMA量測得到電移動度粒徑分布並對應其CO2吸附量 (即在溶劑熱合成過程中量化HKUST-1於CO2捕捉的吸附量,對於開發或是優化MOF材料於CO2捕捉應用提供一定量且快速評估之方法。
本研究的第二部分,則針對葡萄糖衍生碳球 (Glucose-derived carbon nanosphere, GCNS) 進行研究。首先,藉由改變合成時間與結構導向劑濃度對以溶劑熱法製備的預碳化碳球進行研究。利用ES-DMA量測數量濃度、電移動度粒徑分布等基本性質的變化,觀察合成參數對於尺寸大小和膠體穩定性的影響,了解合成條件與材料性質之間的關聯性。此外,藉由掃描式電子顯微鏡 (Scanning electron microscopy, SEM)、穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 以及比表面積與孔隙度分析儀 (Brunauer-Emmett-Teller analyzer, BET) 的數據觀察材料的型態、比表面積與孔洞結構。另外透過加入不同比例的氫氧化鉀 (Potassium hydroxide, KOH) 進行煅燒活化,於表面產生孔洞結構以提升材料的比表面積,結果顯示當KOH相對於預碳化碳球的重量比達到3倍時,因為材料的高比表面積與孔隙度,其電容表現可以達到最大電容值162 F/g。在此階段的工作中,我們成功在定量的基礎上鑑定以溶劑熱法製備的膠體奈米碳材,並透過定量分析深入探討預碳化碳球的生成機制與觀察粒徑的變化,有望優化多孔奈米碳材的重要材料性能,進一步提升用於電化學領域之電極材料的性能表現。
In this study, we demonstrate a high-resolution characterization method, electrospray-differential mobility analysis (ES-DMA) based on the gas-phase electrophoretic method for understanding the solvothermal synthesis of the functional nanomaterial colloids. The analyses from other instruments are employed complementarily to the ES-DMA. The understanding correlated to the interfacial phenomena of colloidal materials are useful for the development of other functional nanomaterial colloids for their performance optimization in catalytic and energy applications.
In the first part of this work, we focus on the solvothermal growth process of metal-organic framework (MOF) colloids. HKUST-1 is selected as the representative copper-based MOF material, and ES-DMA is used for the analysis of synthesis parameters versus the fundamental material properties. Mobility size distributions and number concentrations of MOF versus the synthetic temperature, synthetic time and the concentrations of precursor in the solvothermal process are successfully characterized on a quantitative basis. To know the relationship between the synthesis parameters and the material properties, the crystallinity variation of MOF material and the consequent changes in pore structure are analyzed by using powder x-ray diffraction analyzer (XRD) and the Brunauer-Emmett-Teller (BET) surface area measurement, respectively. The results show that the physical sizes and the crystallinity variation, the specific surface area and pore volume of HKUST-1 colloids increase with synthetic temperature and synthetic time. Moreover, the physical sizes of HKUST-1 colloids also increase with the concentrations of the organic ligand precursors. In addition, we measure the CO2 uptake capacity of the synthesized HKUST-1 colloids at normal pressure and temperature (i.e., 1 atm, 35 °C). From the results, we found the CO2 uptake capacity is proportional to the mobility size of the synthesized MOF colloids. The work provides a proof of concept for controlled synthesis of MOF colloids supported by a fast, quantitative characterization. The proposed approach is shown to be useful for the development and optimization of CO2 uptake capacity through the development of MOF colloids for the applications of CO2 capture and utilization.
In the second part of this work, we focus on glucose-derived carbon nanosphere (GCNS) colloids. First, we investigate the solvothermal growth process of the pre-carbonized nanosphere. The effect of synthetic time and concentrations of the structure directing agent on the cluster size and colloidal stability are investigated through a quantitative characterization of mobility size distributions by ES-DMA. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) surface area analyzer are employed complementarily for the determination of morphology, specific surface area and pore structure of the materials. Subsequently, potassium hydroxide (KOH) is used as the activating agent to produce the micropore structure increasing the specific surface area and porosity of the carbon materials. The results show that GCNS has the maximum specific capacitance capacity of 162 F/g was achieved when the ratio of KOH to pre-carbonized carbon reaches 3 times, in corresponding to high surface area and porosity. The work demonstrates a prototype study of fabricating nanocarbon porous colloidal material with the support of quantitative characterization. The mechanistic understanding developed by the quantitative analysis shows promise for a further optimization of the critical material properties of nanocarbon porous colloidal material to further improve the performance in electrochemistry application.
[1] H. Gleiter, Nanostructured materials: basic concepts and microstructure, Acta Materialia 48(1) (2000) 1-29.
[2] T.A. Saleh, Nanomaterials: Classification, properties, and environmental toxicities, Environmental Technology and Innovation 20 (2020) 101067.
[3] M. Kapilashrami, Y. Zhang, Y.-S. Liu, A. Hagfeldt, J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications, Chemical Reviews 114(19) (2014) 9662-9707.
[4] J.A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, L. Spiccia, Nanomaterials: applications in cancer imaging and therapy, Advanced Materials 23(12) (2011) H18-H40.
[5] J. Tan, T.J. Cho, D.-H. Tsai, J. Liu, J.M. Pettibone, R. You, V.A. Hackley, M.R. Zachariah, Surface modification of cisplatin-complexed gold nanoparticles and its influence on colloidal stability, drug loading, and drug release, Langmuir 34(1) (2018) 154-163.
[6] M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environmental Science and Technology 42(16) (2008) 5843-5859.
[7] Y. Yang, C. Zhang, C. Lai, G. Zeng, D. Huang, M. Cheng, J. Wang, F. Chen, C. Zhou, W. Xiong, BiOX (X= Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management, Advances in Colloid and Interface Science 254 (2018) 76-93.
[8] D. Zhang, X. Du, L. Shi, R. Gao, Shape-controlled synthesis and catalytic application of ceria nanomaterials, Dalton Transactions 41(48) (2012) 14455-14475.
[9] K. Shen, X. Chen, J. Chen, Y. Li, Development of MOF-derived carbon-based nanomaterials for efficient catalysis, Acs Catalysis 6(9) (2016) 5887-5903.
[10] Y.-S. Lin, J.-Y. Tu, D.-H. Tsai, Steam-promoted Methane-CO2 reforming by NiPdCeOx@ SiO2 nanoparticle clusters for syngas production, International Journal of Hydrogen Energy 46(49) (2021) 25103-25113.
[11] T.T.N. Hoang, Y.-S. Lin, T.N.H. Le, T.K. Le, T.K.X. Huynh, D.-H. Tsai, Cu-ZnO@ Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol, Advanced Powder Technology 32(5) (2021) 1785-1792.
[12] W.-C. Chang, J.-T. Tai, H.-F. Wang, R.-M. Ho, T.-C. Hsiao, D.-H. Tsai, Surface PEGylation of silver nanoparticles: kinetics of simultaneous surface dissolution and molecular desorption, Langmuir 32(38) (2016) 9807-9815.
[13] G. Sharma, D. Kumar, A. Kumar, H. Ala'a, D. Pathania, M. Naushad, G.T. Mola, Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review, Materials Science and Engineering: C 71 (2017) 1216-1230.
[14] M.-T. Chiang, H.-L. Wang, T.-Y. Han, Y.-K. Hsieh, J. Wang, D.-H. Tsai, Assembly and Detachment of Hyaluronic Acid on a Protein-Conjugated Gold Nanoparticle, Langmuir 36(48) (2020) 14782-14792.
[15] D.-H. Tsai, F.W. DelRio, R.I. MacCuspie, T.J. Cho, M.R. Zachariah, V.A. Hackley, Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods, Langmuir 26(12) (2010) 10325-10333.
[16] D.-H. Tsai, F.W. DelRio, A.M. Keene, K.M. Tyner, R.I. MacCuspie, T.J. Cho, M.R. Zachariah, V.A. Hackley, Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods, Langmuir 27(6) (2011) 2464-2477.
[17] H.-L. Wang, C.-P. Huang, C.-H. Su, D.-H. Tsai, A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis, Analytical and Bioanalytical Chemistry 411(7) (2019) 1443-1451.
[18] Y.-C. Lai, C.-W. Kung, C.-H. Su, K.-C. Ho, Y.-C. Liao, D.-H. Tsai, Metal–Organic Framework Colloids: Disassembly and Deaggregation, Langmuir 32(24) (2016) 6123-6129.
[19] S. Elzey, D.-H. Tsai, L.Y. Lee, M.R. Winchester, M.E. Kelley, V.A. Hackley, Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS, Analytical and Bioanalytical Chemistry 405(7) (2013) 2279-2288.
[20] T.P. Nguyen, W.-C. Chang, Y.-C. Lai, T.-C. Hsiao, D.-H. Tsai, Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses, Analytical and Bioanalytical Chemistry 409(25) (2017) 5933-5941.
[21] H.-L. Chiang, Y.-S. Chen, Y.-A. Sun, D.S.-H. Wong, D.-H. Tsai, Aerosol Spray Controlled Synthesis of Nanocatalyst using Differential Mobility Analysis Coupled to Fourier-Transform Infrared Spectroscopy, Industrial and Engineering Chemistry Research 59(24) (2020) 11187-11195.
[22] O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials, Nature 423(6941) (2003) 705-714.
[23] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks, Chemical Reviews 112(2) (2012) 673-674.
[24] Q. Wang, D. Astruc, State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis, Chemical Reviews 120(2) (2019) 1438-1511.
[25] S. Bordiga, L. Regli, F. Bonino, E. Groppo, C. Lamberti, B. Xiao, P. Wheatley, R. Morris, A. Zecchina, Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR, Physical Chemistry Chemical Physics 9(21) (2007) 2676-2685.
[26] J. Liu, D.M. Strachan, P.K. Thallapally, Enhanced noble gas adsorption in Ag@ MOF-74Ni, Chemical Communications 50(4) (2014) 466-468.
[27] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Ł.J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage, Journal of the American Chemical Society 137(41) (2015) 13308-13318.
[28] H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.-C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks, Materials Today 21(2) (2018) 108-121.
[29] E.V. Perez, K.J. Balkus Jr, J.P. Ferraris, I.H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, Journal of Membrane Science 328(1-2) (2009) 165-173.
[30] J.-R. Li, J. Sculley, H.-C. Zhou, Metal–organic frameworks for separations, Chemical Reviews 112(2) (2012) 869-932.
[31] X.-L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.-R. Li, H.-C. Zhou, A base-resistant metalloporphyrin metal–organic framework for C–H bond halogenation, Journal of the American Chemical Society 139(1) (2017) 211-217.
[32] T.-Y. Liang, D. Senthil Raja, K.C. Chin, C.-L. Huang, S.A.P. Sethupathi, L.K. Leong, D.-H. Tsai, S.-Y. Lu, Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming, ACS Applied Materials and Interfaces 12(13) (2020) 15183-15193.
[33] H.-L. Wang, H. Yeh, B.-H. Li, C.-H. Lin, T.-C. Hsiao, D.-H. Tsai, Zirconium-Based Metal–Organic Framework Nanocarrier for the Controlled Release of Ibuprofen, ACS Applied Nano Materials 2(6) (2019) 3329-3334.
[34] Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Atomically dispersed metal sites in MOF‐based materials for electrocatalytic and photocatalytic energy conversion, Angewandte Chemie International Edition 57(31) (2018) 9604-9633.
[35] Ü. Kökçam-Demir, A. Goldman, L. Esrafili, M. Gharib, A. Morsali, O. Weingart, C. Janiak, Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications, Chemical Society Reviews 49(9) (2020) 2751-2798.
[36] S. Rojas-Buzo, B. Bohigues, C.W. Lopes, D.M. Meira, M. Boronat, M. Moliner, A. Corma, Tailoring Lewis/Brønsted acid properties of MOF nodes via hydrothermal and solvothermal synthesis: simple approach with exceptional catalytic implications, Chemical Science 12(29) (2021) 10106-10115.
[37] G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids, Chemical Society Reviews 46(11) (2017) 3104-3107.
[38] B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, Journal of the American Chemical Society 130(16) (2008) 5390-5391.
[39] L. Oar-Arteta, T. Wezendonk, X. Sun, F. Kapteijn, J. Gascon, Metal organic frameworks as precursors for the manufacture of advanced catalytic materials, Materials Chemistry Frontiers 1(9) (2017) 1709-1745.
[40] C.R. Marshall, E.E. Timmel, S.A. Staudhammer, C.K. Brozek, Experimental evidence for a general model of modulated MOF nanoparticle growth, Chemical Science 11(42) (2020) 11539-11547.
[41] J. Lai, W. Niu, R. Luque, G. Xu, Solvothermal synthesis of metal nanocrystals and their applications, Nano Today 10(2) (2015) 240-267.
[42] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Scientific Reports 7(1) (2017) 1-7.
[43] L. Wang, Y. Zhu, C. Du, X. Ma, C. Cao, Advances and challenges in metal–organic framework derived porous materials for batteries and electrocatalysis, Journal of Materials Chemistry A 8(47) (2020) 24895-24919.
[44] U. Ryu, S. Jee, P.C. Rao, J. Shin, C. Ko, M. Yoon, K.S. Park, K.M. Choi, Recent advances in process engineering and upcoming applications of metal–organic frameworks, Coordination Chemistry Reviews 426 (2021) 213544.
[45] S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks, Nature Reviews Materials 3(1) (2017) 1-14.
[46] Z. Li, L. Wang, Y. Li, Y. Feng, W. Feng, Carbon-based functional nanomaterials: Preparation, properties and applications, Composites Science and Technology 179 (2019) 10-40.
[47] R.J. Varghese, S. Parani, S. Thomas, O.S. Oluwafemi, J. Wu, Introduction to nanomaterials: synthesis and applications, Nanomaterials for solar cell applications, Elsevier2019, pp. 75-95.
[48] S. Tkachev, E.Y. Buslaeva, S. Gubin, Graphene: A novel carbon nanomaterial, Inorganic Materials 47(1) (2011) 1-10.
[49] Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, H. Xie, F. Moussy, W.I. Milne, A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene, Sensors 12(5) (2012) 5996-6022.
[50] L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage, Small 8(8) (2012) 1130-1166.
[51] F.R. Baptista, S.A. Belhout, S. Giordani, S.J. Quinn, Recent developments in carbon nanomaterial sensors, Chemical Society Reviews 44(13) (2015) 4433-4453.
[52] G. Hong, S. Diao, A.L. Antaris, H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy, Chemical Reviews 115(19) (2015) 10816-10906.
[53] P. Serp, R. Feurer, P. Kalck, Y. Kihn, J. Faria, J. Figueiredo, A chemical vapour deposition process for the production of carbon nanospheres, Carbon 39(4) (2001) 621-626.
[54] Z. Wen, Q. Wang, Q. Zhang, J. Li, Hollow carbon spheres with wide size distribution as anode catalyst support for direct methanol fuel cells, Electrochemistry Communications 9(8) (2007) 1867-1872.
[55] P. Zhang, Z.-A. Qiao, S. Dai, Recent advances in carbon nanospheres: synthetic routes and applications, Chemical Communications 51(45) (2015) 9246-9256.
[56] S. Liu, C. Ma, M.-G. Ma, J.-F. Li, Recent advances in carbon nanomaterials derived from biomass, Science of Advanced Materials 11(1) (2019) 5-17.
[57] Q. He, Y. Yu, J. Wang, X. Suo, Y. Liu, Kinetic study of the hydrothermal carbonization reaction of glucose and its product structures, Industrial and Engineering Chemistry Research 60(12) (2021) 4552-4561.
[58] Y. Qi, M. Zhang, L. Qi, Y. Qi, Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization, Rsc Advances 6(25) (2016) 20814-20823.
[59] Y. Mi, W. Hu, Y. Dan, Y. Liu, Synthesis of carbon micro-spheres by a glucose hydrothermal method, Materials Letters 62(8-9) (2008) 1194-1196.
[60] M. Li, W. Li, S. Liu, Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose, Carbohydrate Research 346(8) (2011) 999-1004.
[61] M. Li, W. Li, S. Liu, Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydrothermal method, Journal of Materials Research 27(8) (2012) 1117-1123.
[62] X. Zheng, W. Lv, Y. Tao, J. Shao, C. Zhang, D. Liu, J. Luo, D.-W. Wang, Q.-H. Yang, Oriented and interlinked porous carbon nanosheets with an extraordinary capacitive performance, Chemistry of Materials 26(23) (2014) 6896-6903.
[63] G. Li, X. Gao, K. Wang, Z. Cheng, Porous carbon nanospheres with high EDLC capacitance, Diamond and Related Materials 88 (2018) 12-17.
[64] C.-C. Hsu, Y.-H. Tu, Y.-H. Yang, J.-A. Wang, C.-C. Hu, Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization, Desalination 481 (2020) 114362.
[65] S.K. Mohamed, M. Abuelhamd, N.K. Allam, A. Shahat, M. Ramadan, H.M. Hassan, Eco-friendly facile synthesis of glucose–derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization, Desalination 477 (2020) 114278.
[66] M.-T. Chiang, Y.-H. Tu, H.-L. Chiang, C.-C. Hu, D.-H. Tsai, Raspberry-structured silver-carbon hybrid nanoparticle clusters for high-performance capacitive deionization, Desalination 520 (2021) 115343.
[67] S.-M. Hong, S.W. Choi, S.H. Kim, K.B. Lee, Porous carbon based on polyvinylidene fluoride: Enhancement of CO2 adsorption by physical activation, Carbon 99 (2016) 354-360.
[68] J. Pallarés, A. González-Cencerrado, I. Arauzo, Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam, Biomass and Bioenergy 115 (2018) 64-73.
[69] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, F. Beguin, Enhanced capacitance of carbon nanotubes through chemical activation, Chemical Physics Letters 361(1-2) (2002) 35-41.
[70] Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali, M. Sillanpää, Methods for preparation and activation of activated carbon: a review, Environmental Chemistry Letters 18(2) (2020) 393-415.
[71] J.-T. Su, Y.-J. Wu, C.-L. Huang, Y.-A. Chen, H.-Y. Cheng, P.-Y. Cheng, C.-T. Hsieh, S.-Y. Lu, Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors, Chemical Engineering Journal 396 (2020) 125314.
[72] C.-N. Feng, X.-Y. Zhan, P. Li, X.-F. Guo, D. Li, X.-C. Zheng, G.-P. Zheng, Capacitive behavior of glucose-derived porous activated carbon with different morphologies, Journal of Alloys and Compounds 805 (2019) 426-435.
[73] P. Chingombe, B. Saha, R. Wakeman, Surface modification and characterisation of a coal-based activated carbon, Carbon 43(15) (2005) 3132-3143.
[74] J.J. Ternero-Hidalgo, J.M. Rosas, J. Palomo, M.J. Valero-Romero, J. Rodríguez-Mirasol, T. Cordero, Functionalization of activated carbons by HNO3 treatment: Influence of phosphorus surface groups, Carbon 101 (2016) 409-419.
[75] J. Zhu, M.C. Hersam, Assembly and electronic applications of colloidal nanomaterials, Advanced Materials 29(4) (2017) 1603895.
[76] X. Xie, W. Zhang, A. Abbaspourrad, J. Ahn, A. Bader, S. Bose, A. Vegas, J. Lin, J. Tao, T. Hang, Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing, Nano Letters 17(3) (2017) 2015-2020.
[77] S. Mehra, V. Polisetti, K. Damarla, P. Ray, A. Kumar, Ionic Liquid-Based Colloidal Formulations for the Synthesis of Nano-MOFs: Applications in Gas Adsorption and Water Desalination, ACS Applied Materials and Interfaces 13(34) (2021) 41249-41261.
[78] H.-L. Wang, H. Yeh, Y.-C. Chen, Y.-C. Lai, C.-Y. Lin, K.-Y. Lu, R.-M. Ho, B.-H. Li, C.-H. Lin, D.-H. Tsai, Thermal stability of metal–organic frameworks and encapsulation of CuO nanocrystals for highly active catalysis, ACS Applied Materials and Interfaces 10(11) (2018) 9332-9341.
[79] W. Kelly, P.H. McMurry, Measurement of particle density by inertial classification of differential mobility analyzer–generated monodisperse aerosols, Aerosol Science and Technology 17(3) (1992) 199-212.
[80] I.W. Lenggoro, B. Xia, K. Okuyama, J.F. de la Mora, Sizing of colloidal nanoparticles by electrospray and differential mobility analyzer methods, Langmuir 18(12) (2002) 4584-4591.
[81] J.R. Álvarez, E. Sánchez-González, E. Pérez, E. Schneider-Revueltas, A. Martínez, A. Tejeda-Cruz, A. Islas-Jácome, E. González-Zamora, I.A. Ibarra, Structure stability of HKUST-1 towards water and ethanol and their effect on its CO2 capture properties, Dalton Transactions 46(28) (2017) 9192-9200.
[82] V.I. Isaeva, O.M. Nefedov, L.M. Kustov, Metal–organic frameworks-based catalysts for biomass processing, Catalysts 8(9) (2018) 368.
[83] S. Patial, P. Raizada, V. Hasija, P. Singh, V.K. Thakur, V.-H. Nguyen, Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants, Materials Today Energy 19 (2021) 100589.
[84] K.-S. Lin, A.K. Adhikari, C.-N. Ku, C.-L. Chiang, H. Kuo, Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage, International Journal of Hydrogen Energy 37(18) (2012) 13865-13871.
[85] J.M. Zamaro, N.C. Pérez, E.E. Miró, C. Casado, B. Seoane, C. Téllez, J. Coronas, HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation, Chemical Engineering Journal 195 (2012) 180-187.
[86] N. Al-Janabi, P. Hill, L. Torrente-Murciano, A. Garforth, P. Gorgojo, F. Siperstein, X. Fan, Mapping the Cu-BTC metal–organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases, Chemical Engineering Journal 281 (2015) 669-677.
[87] C.-L. Yeh, H.-C. Hsi, K.-C. Li, C.-H. Hou, Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio, Desalination 367 (2015) 60-68.
[88] B. Chang, Y. Guo, Y. Li, H. Yin, S. Zhang, B. Yang, X. Dong, Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance, Journal of Materials Chemistry A 3(18) (2015) 9565-9577.
[89] Y. Li, D. Zhang, Y. Zhang, J. He, Y. Wang, K. Wang, Y. Xu, H. Li, Y. Wang, Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors, Journal of Power Sources 448 (2020) 227396.
[90] A. Wiedensohler, An approximation of the bipolar charge distribution for particles in the submicron size range, Journal of Aerosol Science 19(3) (1988) 387-389.
[91] J. Huo, M. Brightwell, S. El Hankari, A. Garai, D. Bradshaw, A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield, Journal of Materials Chemistry A 1(48) (2013) 15220-15223.
[92] L. Zhou, Z. Niu, X. Jin, L. Tang, L. Zhu, Effect of lithium doping on the structures and CO2 adsorption properties of metal‐organic frameworks HKUST‐1, ChemistrySelect 3(45) (2018) 12865-12870.
[93] H.-H. Chu, Y.-S. Yeo, K.S. Chuang, Entry in emulsion polymerization using a mixture of sodium polystyrene sulfonate and sodium dodecyl sulfate as the surfactant, Polymer 48(8) (2007) 2298-2305.
[94] C.-C. Chiang, M.-T. Wei, Y.-Q. Chen, P.-W. Yen, Y.-C. Huang, J.-Y. Chen, O. Lavastre, H. Guillaume, D. Guillaume, A. Chiou, Optical tweezers based active microrheology of sodium polystyrene sulfonate (NaPSS), Optics Express 19(9) (2011) 8847-8854.
[95] C. Mottillo, T. Friščić, Advances in solid-state transformations of coordination bonds: From the ball mill to the aging chamber, Molecules 22(1) (2017) 144.
[96] P.E. Lokhande, U.S. Chavan, A. Pandey, Materials and fabrication methods for electrochemical supercapacitors: overview, Electrochemical Energy Reviews 3(1) (2020) 155-186.
[97] D. Yamamoto, T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer, Chemical Engineering Journal 227 (2013) 145-150.
[98] Y. Tanaka, S. Yamada, D. Tanaka, Continuous Fluidic Techniques for the Precise Synthesis of Metal‐Organic Frameworks, ChemPlusChem 86(4) (2021) 650-661.
[99] S. Bagi, S. Yuan, S. Rojas-Buzo, Y. Shao-Horn, Y. Román-Leshkov, A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808, Green Chemistry 23(24) (2021) 9982-9991.
[100] C. Cui, G. Wu, H. Yang, S. She, J. Shen, B. Zhou, Z. Zhang, Synthesis, characterization and electrochemical impedance spectroscopy of VOx-NTs/PPy composites, Solid State Communications 150(37-38) (2010) 1807-1811.
[101] J. Li, L. Cui, X. Zhang, Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor, Applied Surface Science 256(13) (2010) 4339-4343.
[102] Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured polypyrrole as a flexible electrode material of supercapacitor, Nano Energy 22 (2016) 422-438.
[103] S.T. Chung, M.-T. Chiang, Y.X. Chin, C.-C. Hu, D.-H. Tsai, Controlled Aerosol-based Synthesis of Vanadium Oxides Nanoparticle for Supercapacitor Applications, Journal of the Taiwan Institute of Chemical Engineers 128 (2021) 220-226.
[104] M.-K. Song, Y.-T. Kim, B.-S. Kim, J. Kim, K. Char, H.-W. Rhee, Synthesis and characterization of soluble polypyrrole doped with alkylbenzenesulfonic acids, Synthetic Metals 141(3) (2004) 315-319.
[105] X. Zhang, J. Zhang, W. Song, Z. Liu, Controllable synthesis of conducting polypyrrole nanostructures, The Journal of Physical Chemistry B 110(3) (2006) 1158-1165.
[106] Y. Liao, X.-G. Li, R.B. Kaner, Facile synthesis of water-dispersible conducting polymer nanospheres, Acs Nano 4(9) (2010) 5193-5202.
[107] B. Guo, J. Zhao, C. Wu, Y. Zheng, C. Ye, M. Huang, S. Wang, One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity, Colloids and Surfaces B: Biointerfaces 177 (2019) 346-355.