簡易檢索 / 詳目顯示

研究生: 蘇湋盛
Su, Wei-Sheng
論文名稱: 順式二苯乙烯/芴螺旋體衍生之雙極型混成體於有機電激發光二極體和染料敏化太陽能電池材料之應用
Spirally Configured cis-Stilbene/Fluorene Hybrids as Ambiplor Templates for Organic Light Emitting Diode and Dye-Sensitized Solar Cell Applications
指導教授: 陳建添
Chen, Chien-Tien
口試委員: 季昀
Chi, Yun
周卓煇
Jou, Jwo-Huei
洪文誼
Hung, Wen-Yi
陳建添
Chen, Chien-Tien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 459, 121
中文關鍵詞: 有機電激發光二極體雙極性主體材料客體摻雜物電子傳輸層材料染料敏化太陽能電池順式二苯乙烯/芴
外文關鍵詞: OLED, ambipolar, host material, dopant, electron transporting material, DSSC, cis-Stilbene/Fluorene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一、順式二苯乙烯/芴螺旋體衍生之雙極型混成體於有機電激發光二極體之應用

    有機電激發光二極體在過去幾年已對下一代全彩面板顯示器和固態照明進行深入的研究。然而,電洞與電子不平衡的載子傳輸速率一直是影響元件效率較差的其中一個重要因素。因此,我們成功合成以順式二苯乙烯/芴螺旋混成體系統為核心架構,在C3及C7位置接上相同或不同取代的推拉電子基團,以合成一系列具有電洞傳輸型 (HT-type)、電子傳輸型 (ET-type) 和雙極型 (ambipolar)的藍光、天藍光和藍綠光材料,應用於有機電激發光二極體上。這一系列的材料其玻璃轉換溫度可達120-167 oC,且熱裂解溫度皆高於400℃,擁有不錯的熱穩定性質。此外,我們所開發的材料擁有較為平衡的電洞和電子傳輸速率,其中藍綠光材料N-STIF-P(O)Ph2在電場7.3 105 V/cm下,其電洞傳遞速率為6.510-6 cm2/Vs,電子傳遞速率為5.110-6 cm2/Vs,是為一個良好的雙極性螢光發光材料,應用在單層元件有優越的效率表現 (元件結構:ITO/PEDT:PSS/ N-STIF-P(O)Ph2/LiF/Al),其元件的驅動電壓為2.5 V,在電流密度20 mA/cm2下的放光效能為3.29 cd/A;功率效能為2.84 lm/W;外部量子效率為1.28%,最大亮度在電流密度為5,611 mA/cm2 (操作電壓: 8.5 V) 下竟可高達7,3359 cd/m2 ,而CIE則座落於(0.21, 0.47)。在主體材料方面,以具有電子傳輸型 (ET-type) 的深藍光材料P(O)Ph2-STIF-P(O)Ph2作為主體材料,摻雜季昀教授所開發的紅光客體材料OS1 (元件結構:ITO/PEDT:PSS/NPB /TCTA/ P(O)Ph2-STIF-P(O)Ph2: 10 wt% OS1/3TPYMB/LiF/Al),其紅色磷光元件最大放光效能(Max. Current efficiency)達到22.2 cd/A;最大功率效能(Max. Power efficiency)達到23.3 lm/W;最大外部量子效率(EQE)達到16%,最大亮度在電流密度為1,759 mA/cm2 (操作電壓: 10 V) 下可達2,9602 cd/m2,而CIE則座落於(0.63, 0.36),與一般相關文獻的結果相符合,因此,P(O)Ph2-STIF-P(O)Ph2是一個良好的電子傳輸型 (ET-type) 的主體材料。在有機電激發白光的元件(WOLEDS)上,以主體材料Cbz-STIF-P(O)Ph2摻雜0.4%的橘黃光材料rubrene (元件結構: ITO/PEDT:PSS/NPB /TCTA/ Cbz-STIF-P(O)Ph2: 0.4 wt% Rubrene/TPBI/LiF/Al),其元件效能在操作亮度為1,000 cd/m2下,放光效能(Current efficiency) 為11.3 cd/A;功率效能 (Power efficiency) 為4.23 lm/W;外部量子效率 (EQE) 為3.62%,最大亮度在電流密度為1,719 mA/cm2 (操作電壓: 14.5 V) 下可達到87,800 cd/m2,CIEx,y色度座標為(0.45, 0.48),與理想白光光源的(0.33, 0.33),有36-45%的差距,但從肉眼來看已接近白光光源,同時整體元件效能也達到最佳且最為穩定的狀態。接著,我們嘗試以日本Adachi教授所開發的熱活化型延遲螢光 (Thermally activated delayed fluorescence, TADF)的相同元件結構作為藍光元件,其主體材料為DPEPO,選用Cbz-STIF-cbz作為TADF的客體材料 (元件結構:ITO/PEDOT:PSS/NPB/TCTA/CzSi/DPEPO: 10 wt% Cbz-STIF-cbz/DPPS/BmPyPB/LiF/Al)。雖然沒有觀察到TADF的現象發生於Cbz-STIF-cbz,然而在藍色螢光元件的效能表現還算出色。其元件的驅動電壓為4.1 V,最大亮度在電流密度為538 mA/cm2 (操作電壓: 13.5 V) 下可達2,778 cd/m2,而最大放光效能(Max. Current efficiency)為2.5 cd/A;最大功率效能(Max. Power efficiency)為2.19 lm/W;最大外部量子效率(EQE)達到3.81%,而CIE則座落於(0.15, 0.07)。最後,我們使用高效率且為雙極型材料的N-STIF-CN作為綠、黃和紅光PHOLED的電子傳輸層材料,相較於一般常用的電子傳輸層材料(例如:Alq3, TPBI, BmPyPB等),可明顯提升元件效能和壽命的表現。其中在綠光PHOLED上,採用業界的元件規格,在不加入電洞阻擋層的情況下,相對於業界採用的ET-01在綠色磷光元件效能增加率(PE: +29%; CE: +29%; EQE: +28% @1,000 cd/m2)。壽命測試方面,在初始亮度為1,000 cd/m2下,N-STIF-CN的元件半衰壽命約為210小時,非常接近ET¬-01的元件半衰壽命的270小時,顯示N-STIF-CN是相當具有潛力的電子傳輸層材料應用於PHOLED上。

    二、順式二苯乙烯/芴螺旋體衍生之雙極型混成體於染料敏化太陽能電池之應用

    我們成功合成以順式二苯乙烯/芴螺旋混成體為主體π-核心模板,藉由在C3位置接上雙甲苯基胺作為電子予體,在C7位置接上不同取代的受體型之π-橋體,以合成具有D-π-π-A-A系統的染料N-STIF-T-BTD-CA和具有D-π-A-π-A系統的染料N-STIF-BTD-T-CA。這一系列染料其最大的UV吸收波長在470-523 nm之間,而莫耳吸收係數則為20,801-21,690 M-1 cm-1。在元件效率方面,表現最好的材料為染料N-STIF-BTD-T-CA,在AM 1.5標準太陽光照射下元件效率(η)最大可達4.26 % (Voc = 643 mV, JSC = 8.81 mA/cm2, FF = 0.74); 而光電轉換效率(IPCE)在400-550 nm的吸收範圍中,染料N-STIF-BTD-T-CA的光電轉換效率 (IPCE) 可達到49.3%。


    1.Spirally Configured cis-Stilbene/Fluorene Hybrids as Ambiplor Templates for Organic Light Emitting Diode Applications

    Organic light emitting diodes (OLEDs) have been intensively investigated in the recent years for their potential applications in next generation full-color at panel displays and solid state lighting. However, the recombination efficiency of holes and electrons with unbalanced-charge carriers is one of the key factors for making bad device efficiencies. Therefore, we developed a new class of cis-stilbene/fluorene spiro hybrid systems with hole-transporting, electron-transporting and ambipolar organic fluorescent materials for optoelectronic applications. These types of materials exhibited a stable amorphous glassy state (Tg:120-167 oC) and stable decomposition temperatures (Td: >400 oC). One of the fluorescent materials, N-STIF-P(O)Ph2, had ambipolar charge transport feature with balanced hole and electron mobilities (μh: 6.510-6 cm2/Vs; μe: 5.110-6 cm2/Vs @7.3 105 V/cm). This feature allowed us to utilize N-STIF-P(O)Ph2 successfully in a single-layer device (i.e., ITO/PEDT:PSS/ N-STIF-P(O)Ph2/LiF/Al) with excellent performance. The single layer device emitted bluish green light and showed a turn-on voltage of 2.5 V, a
    maximum brightness of 73,359 cd/m2 at 5,611 mA/cm2 (8.5 V), operational current efficiency of 3.29 cd/A, power efficiency of 2.84 lm/W and EQE of 1.28% at 20 mA/cm2 with CIE color coordinates of (0.21, 0.47). Next, we demonstrated red-emitting PhOLED using the P(O)Ph2-STIF-P(O)Ph2 as the electron-transporting type host material and [Os(bpftz)2(PPhMe2)2 , OS1] as red dopant (i.e., ITO/PEDT:PSS/NPB /TCTA/ P(O)Ph2-STIF-P(O)Ph2: 10 wt% OS1/3TPYMB/LiF/Al). This device with highly efficient performance was successfully achieved, with maximum current efficiency of 22.2 cd/A, power efficiency of 23.3 lm/W, EQE of 16%, and a maximum brightness of 29,602 cd/m2 at 1,759 mA/cm2 (10 V) with CIE color coordinates of (0.63, 0.36). And then, we fabricated fluorescent white OLEDs based on 0.4 wt% rubrene-doped Cbz-STIF-P(O)Ph2 (i.e., ITO/PEDT:PSS/NPB /TCTA/ Cbz-STIF-P(O)Ph2: 0.4 wt% Rubrene/TPBI/LiF/Al). This device showed a turn-on voltage of 3.1 V, a maximum brightness of 87,800 cd/m2 at 1,719 mA/cm2 (14.5 V), operational current efficiency of 11.3 cd/A, power efficiency of 4.23 lm/W and EQE of 3.62% at 1,000 cd/m2 with CIE color coordinates of (0.45, 0.48). Compared with the CIE color coordinates of the ideal white light (CIE: 0.33, 0.33), there were 36-45% gaps between our device and ideal WOLED. However, our device was very close to the white light by the naked eye. And this device had already achieved the best performance and the most stable state. And Next, we tried to fabricate blue OLED based on thermally activated delayed fluorescence (TADF) device configuration developed by Prof. Adachi. For this blue OLED, we used the DPEPO as host material and Cbz-STIF-cbz as TADF material (i.e., ITO/PEDOT:PSS/NPB/TCTA/CzSi/DPEPO: 10 wt% Cbz-STIF-cbz/DPPS/BmPyPB/LiF/Al). Although there was no TADF observed in Cbz-STIF-cbz, this was still good device performance for blue OLED. And this device showed a turn-on voltage of 4.1 V, a
    maximum brightness of 2,778 cd/m2 at 538 mA/cm2 (13.5 V), maximum current efficiency of 2.5 cd/A, power efficiency of 2.19 lm/W and EQE of 3.81% with CIE color coordinates of (0.15, 0.07). Finally, we used a highly efficient and ambipolar-type material, N-STIF-CN, as electron transporting material for green, yellow and red PHOLEDs. Compared with those devices which used common electron transporting materials (i.e., Alq3, TPBI, BmPyPB, etc.), our devices had further improved the device efficiencies and lifetime. For example, we demonstrated green PhOLED using the industry’s device configuration (i.e., ITO/HAT-CN /HT-01: 3 wt% F4-TCNQ /NPB/ TPBI: 5 wt% Ir(ppy)3/ ETL/ LiF/Al), without any hole blocking layer, N-STIF-CN could further supplant ET-01 which was often used in the industry as superior ET material with improved power efficiency by 29%, current efficiency by 29%, and EQE by 28% at 1,000 cd/m2. And for device lifetime tests, the half-life of N-STIF-CN was 210 hours and it was very close to the half-life of ET-01 which was 270 hours under the initial brightness of 1,000 cd/m2. Therefore, N-STIF-CN was very promising material based electron transporting layer for PHOLEDs.

    2.Spirally Configured cis-Stilbene/Fluorene Hybrids as Ambiplor Templates for Dye-Sensitized Solar Cell Applications

    A new class of cis-stilbene/fluorene spiro hybrid systems with di-p-tolylamine donor and combined benzothiadiazole (BTD) and thiophene (T) acceptor units at C-3 and C-7, respectively, were synthesized as two novel D-π-π-A-A-featured dye N-STIF-T-BTD-CA and D-π-A-π-A-featured dye N-STIF-BTD-T-CA for dye-sensitized solar cell applications. These two dyes whose maximum absorption wavelength were observed at 470 nm and 523 nm, respectively, and the molar absorption coefficient were observed at 20,801 M-1 cm-1 and 21,690 M-1 cm-1, respectively. The best device performance was D-π-A-π-A-featured dye N-STIF-BTD-T-CA, and it showed a conversion efficiency (η) of up to 4.26% (Voc = 643 mV, JSC = 8.81 mA/cm2, FF = 0.74) under AM 1.5 G conditions. And the best IPCE values achieved 49.3% within the 400–550 nm absorption range.

    目錄 中文摘要 Abstract 流程目錄 I 圖目錄 II 表目錄 XXVI 第一章 有機電激發光二極體之緒論 1 1-1、前言 1 1-2、分子發光機制 7 1-2-1、激發 7 1-2-2、緩解 8 1-2-3、電激發 10 1-2-4、電激發主客體系統發光機制 11 1-3、有機電激發光二極體發展 15 1-4、有機電激發光二極體元件基本構造 17 1-5、有機電激發光二極體材料 19 1-5-1、陽極材料 (anode materials) 20 1-5-2、電洞注入材料 (hole injection materials) 21 1-5-3、電洞傳輸材料 (hole transporting materials) 23 1-5-4、電洞阻擋材料 (hole blocking materials) 24 1-5-5、電子傳輸材料 (electron transporting materials) 25 1-5-6、電子注入材料 (electron injection materials) 27 1-5-7、陰極材料 (cathode materials) 28 1-5-8、螢光發光材料 (fluorescent emitting materials) 28 1-5-9、磷光發光材料 (phosphorescent emitting materials) 31 1-6、雙極性螢光小分子材料 38 1-7、雙極性磷光主體小分子材料 44 1-8、有機電激發光二極體材料之電荷移動率 51 1-9、有機電激發光二極體之光色 52 1-10、有機電激發光二極體之效率 54 1-10-1、螢光 (磷光) 量子產率 54 1-10-2、發光效率及電源效率 56 1-11、元件內部之能量轉移 58 1-11-1、分子間能量轉移 58 1-11-2、產生焦耳熱 58 1-12、研究背景 59 第二章 順式二苯乙烯/芴螺旋體衍生之雙極型混成體 65 於有機電激發光二極體之應用 65 2-1、文獻回顧 65 2-2、分子設計、合成及結構解析 76 2-3、熱、光物理、電化學性質之探討 88 2-4、元件結果與討論 114 2-4-1、螢光基本元件探討 114 2-4-2、螢光/磷光主體材料元件探討 160 2-4-3、螢光客體材料元件探討 217 第三章 以順式二苯乙烯/芴螺旋體衍生之雙極型混成體作為有機電激發光二極體之新型電子傳輸層材料 249 3-1、研究背景 249 3-1-1、電子傳輸層材料之發展 249 3-1-2、電子傳輸層材料之特性 249 3-1-3、電子傳輸層材料之種類 250 3-2、研究動機 277 3-3、元件結果與討論 279 第四章 順式二苯乙烯/芴螺旋體衍生之雙極型混成體 326 於染料敏化太陽能電池材料之應用 326 4-1、前言 326 4-2、染料敏化太陽能電池之簡介 329 4-2-1、染料敏化太陽能電池之基本構造 330 4-2-2、染料敏化太陽能電池之工作原理 332 4-2-3、染料敏化太陽能電池之元件相關參數 336 4-3、文獻回顧 342 4-4、研究動機 357 4-5、分子設計與合成 361 4-6、光物理及和電化學性質之探討 369 4-7、敏化太陽能電池元件討論 377 第五章 結論與未來展望 392 5-1、結論 392 5-2、未來展望 397 第六章 儀器設備與實驗 402 6-1、分析儀器 402 6-2、光電元件製備及量測 406 6-2-1、有機發光二極體元件製備及量測 406 6-2-2、染料敏化太陽能電池元件製備及量測 407 6-3、實驗步驟及數據分析 408 參考文獻 437 有機發光二極體 (OLED) 437 染料敏化太陽能電池 (DSSC) 453 附錄壹、核磁共振光譜圖 S1 附錄貳 元素分析數據報告 S76 附錄叁 薄膜HOMO能階量測數據(AC-II) S78 附錄肆 薄膜量子產率量測數據 S80 附錄伍 X光單晶繞射結構解析 82

    (1)(a) Müllen, K.; Scherf, U.; Organic Light-Emitting Devices. Synthesis, Properties and Applications; Wiley: Weinheim, Germany, 2006. (b) Chen, C.-H.; Huang, S.-W. OLED/Organic Electroluminescent Materials & Devices; Wunan: Taipei, Taiwan, 2006.
    (2) M. A. Baldo; D. F. O’Brien; M. E. Thompson; S. R. Forrest, Phys. Rev. B, 1999, 60, 14422.
    (3)(a) R. J. Holmes; B. W. D’Andrade; S. R. Forrest; X. Ren; J. Li; M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818. (b) X. Ren; J. Li; R.J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater., 2004, 16, 4743.
    (4) G. Destriau, J. Chem. Phys. 1936, 33, 587.
    (5) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    (6) Helfrich, W.; Schneider, W. Phys. Rev. Lett. 1965, 14, 669.
    (7) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    (8) Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    (9) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
    (10)(a) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1991, 27, L269. (b) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2. 1991, 27, L713
    (11) Ishida, T.; Kobayashi, H.; Nakato, Y.; J. Appl. Phys. 1993, 73, 4344.
    (12) VanSlyke, S.A; Chen, C.-H.; Tang, C.W. Appl. Phys. Lett. 1996, 29, 2160.
    (13) Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807.
    (14) Elschner, A.; Bruder, F.; Heuer, H.W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Trum, S.; Wehrmann, R. Synth. Met. 2000, 11, 139.
    (15) (a) Jang, J.G.; Song, S.H. 2004, WO2004054326 (b) Y.-K. Kim; J. W. Kim; Y. Park, Appl. Phys. Lett. 2009, 94, 063305.
    (16) Deng, Z.-B.; Ding, X.-M.; Lee, S.-T.; Gmbling, W. A. Appl. Phys. Lett. 1999, 74, 2777.
    (17) Hung, L. S.; Zheng, L. R.; Mason, M. G. Appl. Phys. Lett. 2001, 78, 679.
    (18) Zhao, J.-M.; Zhang, S.-T.; Wang, X.-J.; Zhan, Y.-Q.; Wang, X.-Z.; Zhong, G.-Y.; Wang, Z.-j.; Ding, X.-M.; Huang, W.; Hou, X.-Y. Appl. Phys. Lett. 2003, 84, 2913.
    (19) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367.
    (20) Salbeck, J.; Yu, N.; Bauer, J.; Weissotel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
    (21) Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 667.
    (22) Case, F.H.; Brennan, J.A. J. Org. Chem.1954, 19, 919.
    (23) Kinoshita, M.; Shirota, Y. Adv. Funct. Mater. 2002, 12, 780.
    (24) J. Shi; C. W. Tang; C. H. Chen, 1997, U.S. Patent 5646948
    (25) J. D. Anderson; E. M. McDonald; P. A. Lee; M. L. Anderson; E. L. Ritchie; H. K. Hall; T. Hopkins; E. A. Mash; J. Wang; A. Padias; S. Thayumanavan; S. Barlow; S. R. Marder; G. E. Jabbour; S. Shaheen; B. Kippelen; N. Peyghambarian; R. M. Wightman; N. R. Armstrong, J. Am. Chem. Soc. 1998, 120, 9646.
    (26)(a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Prosch, M.; Daub, J. Adv. Mater. 1995, 7, 551.
    (27)(a) Agrawal, A. K.; Jenekhe, S. A.; Chem. Mater. 1996, 8, 579. (b) Shetty, A. S.; Liu, E. B.; Lachicotte, R. J.; Jenekhe, S. A. Chem. Mater. 1999, 1, 2292.
    (28)(a) Kanbara, T.; Yamamoto, T.; Macromolecules 1993, 26, 3464.; (b) Yamamoto, T.; Sugiyama, K.; Kushida, T.; Inoue, T.; Kanbara, T. J. Am. Chem. Soc. 1996, 118, 3930. (c) Bard, A. J.; Lund, H.; Dekker, M. Encyclopedia of Electrochemistry of the Elements; New York, US, 1984. (d) Redecker, M.; Bradley, D. D. C.; Jandke, M.; Strohriegl, P. Appl. Phys. Lett. 1999, 75, 109.
    (29) Tonzola, C. J.; Alam, M. M; Kaminski, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548.
    (30)(a) O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R.; Appl. Phys. Lett. 1999, 74, 442. (b) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (c) Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A.; Thompsom, M. E.; D’Andrade, B. W.; Forrest, S. R. Org. Electron. 2003, 4, 77. (d) Naka, S.; Okada, H.; Onnagawa, H.; Tsutsui, T. Appl. Phys. Lett. 2000, 76, 197.
    (31)(a) Adachi, A.; Ohshita, J.; Kunai, A.; Kido, J.; Okita, K.; Chem. Lett. 1998, 27, 1233. (b) Oshita, J.; Kai, H.; Takata, A.; Iida, T.; Kunai, A.; Ohta, N.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Sakamaki K; Okita, K. Organometallics, 2001, 20, 4800.
    (32) Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices. 1997, 44, 1425.
    (33) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. Lett. 2003, 93, 6159.
    (34) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
    (35)(a) Zhang, Y.; Lai, S. L.; Tong, Q. X.; Lo, M. F.; Ng, T. W.; Chan, M. Y.; Wen, Z. C.; He, J.; Sham, J. K.; Tang, X. L. Chem. Mater. 2012, 24, 61. (b) Xiaohui Yang; Shijun Zheng; Rebecca Bottger; Hyun Sik Chae; Takeshi Tanaka; Sheng Li; Amane Mochizuki; Ghassan. E. Jabbour J. Phys. Chem. C, 2011, 115, 14347.
    (36)(a) Ku, S. Y.; Chi, L. C.; Hung, W. Y.; Yang, S. W.; Tsai, T. C.; Wong, K. T.; Chen, Y. H.; Wu, C. I. J. Mater. Chem. 2009, 19, 773. (b) Yi Yuan; Guo-Qiang Zhang; Feng Lu; Qing-Xiao Tong; Qing-Dan Yang; Hin-Wai Mo; Tsz-Wai Ng; Ming-Fai Lo; Zheng-Qing Guo; Chuan Wu; Chun-Sing Lee Chem. Asian J. 2013, 8, 1253.
    (37)(a) Yeh, H. C.; Yeh, S. J.; Chen, C. T. Chem. Commun. 2003, 2632. (b) Lee, Y. T.; Chiang, C. L.; Chen, C. T. Chem. Commun. 2008, 217.
    (38) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.
    (39) Cao, Y.; Parker, I. D.; Y, G.; Zhang, C.; Heeger, A. Nature 1999, 397, 414.
    (40) Hosokawa, C.; Sakamoto, S. 1995, U.S. 5389444
    (41) Atul Chaskar; H.-F. Chen; K.-T. Wong, Adv. Mater. 2011, 23, 3876.
    (42) (a) R. J. Holmes; S. R. Forrest; Y.-J. Tung; R. C. Kwong; J. J. Brown ; S. Garon; M. E. Thompson, Appl. Phys. Lett. 2003 , 82 , 2422 . (b) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett. 2003 , 83 , 569 . (c) J. Kavitha; S.-Y. Chang; Y. Chi; J.-K. Yu; Y.-H. Hu; P.-T. Chou; S.-M. Peng; G.-H. Lee; Y.-T. Tao; C.-H. Chien; A. J. Carty , Adv. Funct. Mater. 2005 , 15 , 223 .
    (43)(a) S. Lamansky; P. Djurovich; D. Murphy; F. Abdel-Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304. (b) T. Tsutsui; M. J. Yang; M. Yahiro; K. Nakamura; T. Watanabe; T. Tsuji; M. Fukuda; T. Wakimoto; S. Miyaguchi, Jpn. J. Appl. Phys. Part 2, 1999, 38, L1502. (c) C. Adachi; R. C. Kwong; S. R. Forrest, Org. Electron., 2001, 2, 37. (d) M. A. Baldo; M. E. Thompson; S. R. Forrest, Nature (London), 2000, 403, 750. (e) B. W. D’Andrade; M. A. Baldo, C. Adachi; J. Brooks; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 1045. (f) T. Watanabe; K. Nakamura; S. Kawami; Y. Fukuda; T. Tsuji; T. Wakimoto; S. Miyaguchi; M. Yahiro; M. J. Yang; T. Tsutsui., Synth. Met., 2001, 122, 203.
    (44) C. Adachi; R. C. Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
    (45)(a) V. Adamovich; J. Brooks; A. Tamayo; A. M. Alexander; P. I. Djurovich; B. W. D’Andrade; C. Adachi; S. R. Forrest; M. E. Thompson, New J. Chem., 2002, 26, 1171. (b) R. J. Holmes; S. R. Forrest; Y.-J. Tung; R. C. Kwong; J. J. Brown; S. Garon; M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
    (46) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett., 2003, 83, 569.
    (47) W. Li; J. Qiao; L. Duan; L. Wang; Y. Qiu , Tetrahedron 2007 ,63 ,10161.
    (48) M. Ikai; S. Ichinosawa; Y. Sakamoto; T. Suzuki; Y. Taga, Appl. Phys. Lett., 2001, 79, 156.
    (49) T. Tsuzuki; S. Tokito , Appl. Phys. Lett. 2009 , 94 , 33302 .
    (50) J.-W. Kang; D.-S. Lee; H.-D. park; J. W. Kim; W.-I. Jeong; Y.-S. Park; S.-H. Lee; K. Go; J.-S. Lee; J.-J. Kim , Org. Electron. 2008 , 9 , 452 .
    (51) H. Inomata; K. Goushi; T. Masuko; T. Konno; T. Imai; H. Sasabe; J. J. Brown; C. Adachi, Chem. Mater., 2004, 16, 1285.
    (52) T. Tsuji; S. Kawami; S. Miyaguchi; T. Naijo; T. Yuki; S. Matsuo; H. Miyazaki, Proceedings of SID’04, p.900, May 23-28, 2004, Seattle, USA.
    (53) P. E. Burrows; A. B. Padmaperuma; L. S. Sapochak; P. Djurovich; M. E. Thompson, Appl. Phys. Lett., 2006, 18, 183503.
    (54) P. A. Vecchi; A. B. Padmaperuma; H. Qiao; L. S. Sapochak; P. E. Burrows, Org. Lett., 2006, 8 (19), 4211.
    (55) A. B. Padmaperuma; L. S. Sapochak; P. E. Burrows, Chem. Mater., 2006, 18, 2389.
    (56) S. O. Jeon; S. E. Jang; H. S. Son; J. Y. Lee , Adv. Mater. 2011 , 23 ,1436.
    (57)(a) S.-J. Su; H. Sasabe; T. Takeda; J. Kido , Chem. Mater. 2008 , 20 ,1691. (b) S.-J. Su; C. Cai; J. Kido , Chem. Mater. 2011 , 23 , 274.
    (58) Y. Tao; Q. Wang; L. Ao; C. Zhong; J. Qin; C. Yang; D. Ma , J. Mater. Chem. 2010 , 20 , 1759.
    (59) C. Adachi; M. A. Baldo; S. R. Forrest; S. Lamansky; M. E. Thompson; R. C. Kwong, Appl. Phys. Lett., 2001, 78, 1622.
    (60) A. Tsuboyama; H. Iwawaki; M. Furugori; T. Mukaide; J. Kamatani; S. Igawa; T. Moriyama; S. Miura; T. Takiguchi; S. Okada; M. Hoshino; K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971.
    (61) Y.-L. Tung; S.-W. Lee; Y. Chi; Y.-T. Tao; C.-H. Chien; Y.-M. Cheng; P.-T. Chou; S.-M. Peng; C.-S. Liu, J. Mater. Chem. 2005, 15, 460.
    (62) P.-I Shih; C.-F. Shu; Y.-L. Tung; Y. Chi, Appl. Phys. Lett. 2006, 88, 251110.
    (63) M. A. Baldo; S. Lamansky; P. E. Burrows; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
    (64) H. Z. Xie; M. W. Liu; O. Y. Wang; X. H. Zhang; C. S. Lee; L. S. Hung; S. T. Lee; P. F. Teng; H. L. Kwong; H. Zheng; C. M. Che , Adv. Mater. 2001 , 13 , 1245.
    (65) S. Lamansky; P. Djurovich; D. Murphy; F. A. Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am. Chem. Soc. 2001 , 123 , 4304.
    (66) C. Adachi; R. . Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
    (67)(a) R. J. Holmes; B. W. D’Andrade; S. R. Forres; X. Ren; J. Li; M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818. (b) X. Ren; J. Li; R. J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater., 2004, 16, 4743.
    (68) A. B. Tamayo; B. D. Alleyne; P. I. Djurovich; S. Lamansky; I. Tsyba; N. N. Ho; R. Bau; M. E. Thompson , J. Am. Chem. Soc. 2003 , 125 , 7377.
    (69) Hutchison, G.; Ratner, M.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 16866.
    (70) Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548.
    (71) Thomas, K. R. J.; Lin, J.-T.; Tao, Y.-T.; Chuen, C.-H. Adv. Mater. 2002, 14, 822.
    (72) Yan Zhu; Abhishek P. Kulkarni; Samson A. Jenekhe, Chem. Mater. 2005, 17, 5225.
    (73) Li, Z. H.; Wong. M. S.; Fukutani, H.; Tao, Y. Org. Lett. 2006, 8, 4271.
    (74) Liao, Y.-L.; Lin, C.-Y.; Wong, K.-T.; Hou, T.-H.; Hung, W.-Y. Org. Lett. 2007, 9, 4511.
    (75)(a) Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J.-T.; Ke, T.-H.; Chen, L.-Y.; Tsai, M.-H.; Wu, C.-C. Angew. Chem. Int. Ed. 2008, 47, 581. (b) Chen, C.-H.; Huang, W.-S.; Lai, M.-Y.; Tsao, W.-C.; Lin, J.-T.; Wu, Y.-H.; Ke, T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater. 2009, 19, 2661.
    (76) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Org. Lett. 2008, 10, 421.
    (77)(a) Y. T. Tao; Q. Wang; Y. Shang; C. L. Yang; L. Ao; J. G. Qin; D. Ma; Z. G. Shuai, Chem. Commun. 2009, 77. (b) Y. T. Tao; Q. A. Wang; C. L. Yang; C. Zhong; J. D. Qin; D. Ma, Adv. Funct. Mater. 2010, 20, 2923. (c) Y. Tao; Q. Wang; L. Ao; C. Zhong; J. Qin; C. Yang; D. Ma, J. Mater. Chem. 2010, 20, 1759.
    (78) S. Y. Ku; W. Y. Hung; C. W. Chen; S. W. Yang; Ejabul Mondal; Y. Chi; K. T. Wong, Chem. Asian J. 2012, 7, 133.
    (79) 陳金鑫;黃孝文,夢幻顯示器;OLED材料與元件,五南出版社,2007, p.26-p.28。
    (80) B. Chen; C.-S. Lee; S.-T. Lee; P. Webb; Y.-C. Chan; W. Gambling; H. Tian; W. Zhu, Jpn. J. Appl. Phys. Part 1, 2000, 39, 1190.
    (81) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys Rev. B 1998, 58, 3730.
    (82) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. J. Am. Chem. Soc. 1997, 119, 11341.
    (83) Chen, W. C.; Lee, Y. W.; Chen, C. T. Org. Lett. 2010, 12, 1472.
    (84) Chen, C.-T.; Lin, J.-S.; Moturu, V. R. K.; Lin, Y.-W.; Wei, Y.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980.
    (85) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992.
    (86) Wei, Y.; Chen, C.-T. J. .Am. Chem. Soc. 2007, 129, 7478.
    (87) Chen, C.-T.; Chao, W.-S. Chao; Liu, H.-W. Liu; Wei, Y.; Jou, J.-H.; S. Kumar, RSC Adv., 2013, 3, 9381.
    (88) M. H. Tsai; Y. H. Hong; C. H. Chang; H. C. Su; C. C. Wu; A. Matoliukstyte; J. Simokaitiene; S. Grigalevicius; J. V. Grazulevicius; C. P. Hsu, Adv. Mater. 2007, 19, 862.
    (89)(a) K. K. Kim; B. S. Moon; C. S. Ha, J. Appl. Phys. 2006, 100, 064511. (b) N. Matsusue; Y. Suzuki; H. Naito, Jpn. J. Appl. Phys. 2005, 44, 3691.
    (90) Y. Tao; Q. Wang; C. Yang; Q. Wang; Z. Zhang; T. Zou; J. Qin; D. Ma, Angew. Chem. Int. Ed. 2008, 47, 8104.
    (91) S. O. Jeon; J. Y. Lee, J. Mater. Chem. 2012, 22, 4233.
    (92) S. E. Jang; C. W. Joo; J. Y. Lee, Thin Solid Films, 2010, 519, 906.
    (93) C. H. Cheng; H. H. Chou, Adv. Mater. 2010, 22, 2468.
    (94) D. Yu; F. Zhao; C. Han; H. Xu; J. Li; Z. Zhang; Z. Deng; D. Ma; P. Yan, Adv. Mater. 2012, 24, 509.
    (95) Zhen Zhang; Zhensong Zhang; R. Chen; J. Jia; C. Han; C. Zheng; H. Xu; D. Yu; Y. Zhao; P. Yan; S. Liu; W. Huang, Chem. Eur. J. 2013, 19, 9549.
    (96) S. Gong; Y.-L. Chang; K. Wu; R. White; Z.-H. Lu; D. Song; C. Yang, Chem. Mater. 2014, 26, 1463.
    (97)(a) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Brédas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. (b) Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. J. Am. Chem. Soc. 2004, 126, 12325.
    (98)(a) Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl.
    Phys. Lett. 1995, 67, 3853. (b) Woo, H.-S.; Cho, S.; Kwon, T.-W.; Park, D.-K. J. Korean Phys. Soc. 2005, 46, 981.
    (99) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10092.
    (100) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
    (101) S. W. Wen; M. T. Lee; C. H. Chen, Journal of Display Technology, 2005, 1, 90.
    (102) Generated by using Scigress molecular simulation package with ZINDO Configuration Interaction using INDO/S parameters after optimizing geometry by using DGauss with the B88-LYP GGA functional with the DZVP basis sets.
    (103) Gong, S.; Chen, Y.; Yang, C.; Zhong, C.; Qin, J.; Ma, D. Adv. Mater. 2010, 22, 5370.
    (104)(a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437. (b) Miyaura, N.; Suzuki, A. Chem. Comm. 1979, 19, 866. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1979, 7, 2457.
    (105) 魏屹 (2009),喹喔啉/二苯基芴及二苯乙烯/芴之雙重鄰位混成系統在光電材料上的應用,國立台灣師範大學化學系博士論文。
    (106)(a) Marrec, P.; Dano, C.; Simonet, N. G.; Simonet, J. Synth. Met. 1997, 89, 171. (b) Abe, S. Y.; Bernede, J. C.; Delvalle, M. A.; Tregouet, Y.; Ragot, F.; Diaz, F. R.; Lefrant, S. Synth. Met. 2002, 126, 1. (c) Inzelt, G. J. Solid State Electrochem. 2003, 7, 503. (d) K. M. Omer; S.-Y. Ku; Y.-C. Chen; K.-T. Wang; A. J. Bard. J. Am. Chem. Soc. 2010, 132, 10944.
    (107) Y. Nakajima; D. Yamashita; A. Endo; T. Oyamada; C. Adachi; M. Uda, Proceedings of IDW’04, Dec.8-10, 2004, 1391, Niigat, Japan.
    (108) 劉浩瑋 (2011),二苯乙烯/笏之雙重鄰位混成系統螢光衍生物於有機電激發光二極體之應用,國立清華大學化學系碩士論文。
    (109)(a) Yang, Y.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1245. (b) Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J. Synth. Met. 1997, 87, 171.
    (110)(a) Ikeda, H.; Namai, H.; Kato, N.; Ikeda, T. Tetrahedron Lett. 2006, 47, 1501. (b) Namai, H.; Ikeda, H.; Hoshi, Y.; Kato, N.; Morishita, Y.; Mizuno, K. J. Am. Chem. Soc. 2007, 129, 9032. (c) Namai, H.; Ikeda, H.; Hoshi, Y.; Mizuno, K. Angew. Chem. Int. Ed. 2007, 46, 7396.
    (111) Ganzorig, C.; Fujihira, M. Appl. Phys. Lett. 2002, 81, 3137.
    (112) Murata, H.; Merritt, C. D.; Kafafi, Z. H. IEEE J. 1998, 4, 119.
    (113) J. Zhao; G.-H. Xie; C.-R. Yin; L.-H. Xie; C.-M. Han; R.-F. Chen; H. Xu; M.-D. Yi; Z.-P. Deng; S.-F. Chen; Y. Zhao; S.-Y. Liu; W. Huang Chem. Mater. 2011, 23, 5331.
    (114) A. B. Padmaperuma; L. S. Sapochak; P. E. Burrows, Chem. Mater. 2006, 18, 2389.
    (115) Ting, H.-C.; Chen, Y.-M.; You, H.-W.; Hung, W.-Y. Hung; Lin, S.-H. Lin; Chaskar, A.; Chou, S.-H.; Chi, Y.; Liu, R.-H.; Wong, K.-T. J. Mater. Chem., 2012, 22, 8399.
    (116) Mondal, E.; Hung, W.-Y. ; Dai, H.-C.; Wong, K.-T. Adv. Funct. Mater. 2013, 23, 3096.
    (117) Chien, C.-H.; Hsu, F.-M.; Shu, C.-F.; Chi, Y. Organic Electronics, 2009, 10, 871.
    (118) Jeon, S. O.; Yook, K. S.; Joo, C. W.; Lee, J. Y. Organic Electronics, 2010, 11, 881.
    (119) Fan, C.-H.; Sun, P.; Su, T.-H.; Cheng, C.-H. Adv. Mater. 2011, 23, 2981.
    (120) S. A. VanSlyke; C. W. Tang; L. C. Roberts, US 4, 720, 432 (1988).
    (121) F. Steuber; J. Staudigel; M. Stössel; J. Simmerer; A. Winnacker; H. Spreitzer; F. Weissörtel; J. Salbeck Adv. Mater. 2000, 12, 130.
    (122) G. Li; J. Shinar Appl. Phys. Lett. 2003, 83, 5359.
    (123) J. Li; Y. Duan; Y. Zhao; X. Li; C. Li; J. Hou; S. Liu Semicond. Sci. Technol. 2006, 21, 148.
    (124) Adachi, C.; Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H., Nature 2012, 492, 234.
    (125) L. Xiao; S.-J. Su; Y. Agata; H. Lan; J. Kido Adv. Mater. 2009, 21, 1271.
    (126) Q. Zhang; J. Li; K. Shizu; S. Huang; S. Hirata; H. Miyazaki; C. Adachi J. Am. Chem. Soc. 2012, 134, 14706.
    (127)(a) E. H. Martin; J. Hirsch Solid State Commun. 1969, 7, 783. (b) 王雅琪 (2014),適用在高效率有機發光二極體的電子傳輸材料,國立清華大學材料科學工程學系碩士論文。
    (128) J. D. Anderson; E. M. McDonald; P. A. Lee; M. L. Anderson; E. L. Ritchie; H. K. Hall; T. Hopkins; E. A. Mash; J. Wang; A. Padias; S. Thayumanavan; S. Barlow; S. R. Marder; G. E. Jabbour; S. Shaheen; B. Kippelen; N. Peyghambarian; R. M. Wightman; N. R. Armstrong J. Am. Chem. Soc. 1998, 120, 9646.
    (129) R. G. Kepler; P. M. Beeson; S. J. Jacobs; R. A. Anderson; M. B. Sinclair; V. S. Valencia; P. A. Cahill Appl. Phys. Lett. 1995, 66, 3618.
    (130) T. Y. Chu; Y. S. Wu; J. F. Chen; C. H. Chen Chem. Phys. Lett. 2005, 404, 121.
    (131) I. G. Hill; A. J. Makinen; Z. H. Kafafi Appl. Phys. Lett. 2000, 77, 2003.
    (132)(a) J. H. Jou; C. P. Wang; M. H. Wu; P. H. Chiang; H. W. Lin; H. C. Li; R. S. Liu Org. Electron. 2007, 8, 29. (b) Q. S. Zhang; Q. G. Zhou; Y. X. Cheng; L. X. Wang; D. G. Ma; X. B. Jing; F. S. Wang Adv. Mater. 2004, 16, 432. (c) P. Chen; Q. Xue; W. F. Xie; Y. Duan; G. H. Xie; Y. Zhao; J. Y. Hou; S. Y. Liu; L. Y. Zhang; B. Li Appl. Phys. Lett. 2008, 93, 153508.
    (133)(a) Z. Q. Gao; C. S. Lee; I. Bello; S. T. Lee; R. M. Chen; T. Y. Luh; J. Shi; C. W. Tang Appl. Phys. Lett. 1999, 74, 865. (b) H. T. Shih; C. H. Lin; H. H. Shih; C. H. Cheng Adv. Mater. 2002, 14, 1409. (c) K. R. J. Thomas; J. T. Lin; Y. T. Tao; C. H. Chuen Chem. Mater. 2002, 14, 3852.
    (134)(a) J. P. Duan; P. P. Sun; C. H. Cheng Adv. Mater. 2003, 15, 224. (b) T. D. Anthopoulos; J. P. J. Markham; E. B. Namdas; I. D. W. Samuel; S. C. Lo; P. L. Burn Appl. Phys. Lett. 2003, 82, 4824. (c) S. C. Lo; N. A. H. Male; J. P. J. Markham; S. W. Magennis; P. L. Burn; O. V. Salata; I. D. W. Samuel Adv. Mater. 2002, 14, 975.
    (135)(a) V. I. Adamovich; S. R. Cordero; P. I. Djurovich; A. Tamayo; M. E. Thompson; B. W. D’ Andrade; S. R. Forrest Org. Electron. 2003, 4, 77. (b) M. A. Balo; S. Lamansky; P. E. Burrows; M. E. Thompson; S. R. Forrest Appl. Phys. Lett. 1999, 75, 4.
    (136) S. Naka; H. Okada; H. Onnagawa; T. Tsutsui Appl. Phys. Lett. 2000, 76, 197.
    (137) D. F. O’Brien; M. A. Baldo; M. E. Thompson; S. R. Forrest Appl. Phys. Lett. 1999, 74, 442.
    (138) Q. Xin; W. L. Li; W. M. Su; T. L. Li; Z. S. Su; B. Chu; B. Li J. Appl. Phys. 2007, 101, 044512.
    (139) B. W. D’Andrade; S. R. Forrest; A. B. Chwang Appl. Phys. Lett. 2003, 83, 3858.
    (140) J. Kido; N. Ide; Y. Li; Y. Agata; H. Shimizu, 2005 Pacific Rim Conference on Lasers and Electro-Optics, (2005) 563-564.
    (141) D. Tanaka; T. Takeda; T. Chiba; S. Watanabe; J. Kido Chem. Lett. 2007, 36, 262.
    (142) D. Tanaka; Y. Agata; T. Takeda; S. Watanabe; J. Kido Jpn. J. Appl. Phys. 2007, 46, L117.
    (143) S.-J. Su; T. Chiba; T. Takeda; J. Kido Adv. Mater. 2008, 20, 2125.
    (144) S.-J. Su; Y. Takahashi; T. Chiba; T. Takeda; J. Kido Adv. Funct. Mater. 2009, 19, 1260.
    (145) H. Sasabe; E. Gonmori; T. Chiba; Y.-J. Li; D. Tanaka; S.-J. Su; T. Takeda; Y.-J. Pu; K.-I. Nakayama; J. Kido Chem. Mater. 2008, 20, 5951.
    (146) S.-J. Su; E. Gonmori; H. Sasabe; J. Kido Adv. Mater. 2008, 20, 4189.
    (147) H. Ye; D. Chen; M. Liu; S.-J. Su; Y.-F. Wang; C.-C. Lo; A. Lien ; J. Kido Adv. Funct. Mater. 2014, 24, 3268.
    (148) Y. Sun; L. Duan; D. Zhang; J. Qiao; G. Dong; L. Wang ; Y. Qiu Adv. Funct. Mater. 2011, 21, 1881.
    (149) S. Yamaguchi; K. Tamao Bull. Chem. Soc. Jpn. 1996, 69, 2327.
    (150) S. O. Jeon; S. E. Jang; H. S. Son; J. Y. Lee Adv. Mater. 2011, 23, 1436.
    (151) W. Jiang; H. Xu; X. Ban; G. Yuan; Y. Sun; B. Huang; L. Duan; Y. Qiu Org. Lett. 2014, 16, 1140.
    (152) http://repository.tudelft.nl/assets/uuid:671bd410-095b-4757-a6ca-d38bbc917131/MS-32.953.pdf
    (153) Dong, M.-S.; Wu, X.-M.; Hua, Y.-L.; Qi, Q.-J.; Yin, S.-G. Chin. Phys. Lett. 2010, 27, 127802.
    (154) 陳金鑫;黃孝文,夢幻顯示器;OLED材料與元件,五南出版社,2007, p.276-p.277。
    (155) 趙韋善 (2013),具雙極性順式二苯乙烯/芴螺旋體雙重鄰位混成系統之衍生物在有機電致發光和有機染料敏化太陽能電池材料上的應用之研究,國立台灣師範大學化學系博士論文。
    (156) National Renewable Energy Laboratory (NREL) http://www.nrel.gov/
    (157) 張正華;李陵嵐;葉楚平;楊平華,有機與塑膠太陽能電池,五南出版社,2007, p.181.
    (158)(a) W. Kautek; H. Gerischer; H. Tributsch J. Electrochem. Soc. 1980, 127, 2471. (b) W. Kautek; H. Gerischer Electrochim. Acta 1981, 26, 1771. (c) K. Tubbesing; D. Meissner; R. Memming; B. Kastening Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 214, 685. (d) C. Sinn; D. Meissner; R. Memming J. Electrochem. Soc. 1990, 137, 168.
    (159) B. Oregan; M. Grätzel Nature 1991, 353, 737.
    (160)(a) M. Grätzel J. Photochem. Photobiol. A 2004, 164, 3. (b) B. Oregan; M. Grätzel Nature 1991, 353, 737. (c) M. K. Nazeeruddin; A. Kay; I. Rodicio; R. H.-B., E. Miiller; P. Liska; N. Vlachopoulos; M. Grätzel J. Am. Chem. Soc. 1993, 115, 6382.
    (161)(a) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (b) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya. R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Part 2 2006, 45, L638. (c) Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphrey-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Chem. Commum. 2008, 2629.
    (162) A. Hagfeldt; G. Boschloo; L. Sun; L. Kloo; H. Pettersson Chem. Rev. 2010, 110, 6595.
    (163) M. Grätzel Progress in Photovoltaics: Research and Applications 2006, 14, 429.
    (164) M. Grätzel Nature 2001, 414, 338.
    (165) N. Robertson Angew. Chem. Int. Ed. 2006, 45, 2338.
    (166) M. Gorlov; L. Kloo Dalton Transactions 2008, 2655.
    (167) 潘宗佑 (2012),紫質敏化太陽能電池之染料共敏化分子工程,國立交通大學應用化學系碩士論文。
    (168) 李陸玲;陳建仲;刁維光,化工期刊, 2009, 42, 1799
    (169) M. Grätzel Inorg. Chem. 2005, 44, 6841.
    (170) 周俊誠 (2014),二價釕、鋨金屬光敏染料合成及其在染敏太陽能電池上的應用,國立清華大學化學系博士論文。
    (171) A. Reynal; E. Palomares Eur. J. Inorg. Chem. 2011, 2011, 4509.
    (172)(a) L. M. Goncalves; V. de Zea Bermudez; H. A. Ribeiro; A. M. Mendes Energy Environ. Sci. 2008, 1, 655. (b) A. Hagfeldt; G. Boschloo; L. Sun; L. Kloo; H. Pettersson Chem. Rev. (Washington, DC, U. S.), 2010, 110, 6595.
    (173) K. Kalyanasundaram; M. Grätzel Coord. Chem. Rev. 1998, 177, 347.
    (174) T. W. Hamann; R. A. Jensen; A. B. F. Martinson; H. Van Ryswyk; J. T. Hupp Energy Environ. Sci. 2008, 1, 66.
    (175) N. A. Anderson; T. Lian Coord. Chem. Rev. 2004, 248, 1231.
    (176)(a) Yella, A.; Lee, H.-W.; Taso, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Eric Diau, W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science, 2011, 334, 629-634. (b) Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2009, 42, 1809. (c) Martínez-Díaz, M. V.; de la Torrea, G.; Torres, T. Chem. Commun., 2010, 46, 7090. (d) Walter, M. G.; Rudine, A. B.; Wamser, C. C. J. Porphyrins & Phthalocyanines 2010, 14, 759.
    (177) For a review, see: Giribabu, L.; Kanaparthi, R. K.; Velkannan, V. Chem. Record 2012, 12(3), 306-328.
    (178)(a) Miyashita, M.; Sunahara, K.; Nishikawa, T.; Uemura, Y.; Koumura, N.; Hara, K.; Mori, A.; Abe, T.; Suzuki, E.; Mori, S. J. Am. Chem. Soc. 2008, 130, 17874. (b) Hara, K.; Miyamoto, K.; Abe, Y.; Yanagida, M. J. Phys. Chem. B, 2005, 109, 23776. (c) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C, 2007, 111, 7224. (d) Katoh, R.; Huijser, A.; Hara, K.; Savenije, T. J.; Siebbeles, L. D. A. J. Phys. Chem. C, 2007, 111, 10741.
    (179)(a) Wang, Z. S.; Cui, Y.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Hara, K. J. Phys. Chem. C, 2008, 112, 17011. (b) Sayama, K.; Tsukagoshi, S.; Hara, K.; Ohga, Y. J. Phys. Chem. B, 2002, 106, 1363. (c) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama. K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B, 2003, 107, 597. (d) Wang, Z. S.; Hara, K.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Arakawa, H.; Sugihara, H. J. Phys. Chem. B, 2005, 109, 3907.
    (180) Horiuchi, T.; Miura, H.; Uchida, S. Chem. Commun. 2003, 3036.
    (181) Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218.
    (182) Kuang, D.; Uchida, S.; Humphry-Baker, R.; Zakeeruddin, S. M.; Graetzel, M. Angew. Chem. Inter. Ed. 2008, 47(10), 1923-1927.
    (183) Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M. Chem. Commun. 2008, (41), 5194-5196.
    (184)(a) Kim, S.; Lee, J. K.; Kang, S. O.; Ko, J.; Yum, J. H.; Fantacci, A.; Angelis, F. D.; Di Censo, D.; Nazeeruddin, Md. K.; Gräzel, M. J. Am. Chem. Soc. 2006, 128, 16701. (b) Kuang, D.; Walter, P.; Nesch, F. Kim, S.; Ko, J.; Comte, P.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Langmuir, 2007, 23, 10906.
    (185) Liu, W.-H.; Wu, I.-C.; Lai, C.-H.; Lai, C.-H.; Chou, P.-T.; Li, Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y. Chem. Commun. 2008, 5152.
    (186) Chen, K.-F.; Hsu, Y.-C.; Wu, Q.; Yeh, M.-C. P.; Sun, S.-S. Org. Lett. 2009, 11, 377.
    (187) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Yoshihara, T.; Murai, M. Adv. Funct. Mater. 2005, 15(2), 246.
    (188)(a) Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. (b) Hagberg, D. P.; Marinado, T.; Karlesson, M.; Nonomura, K.; Oin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72(25), 9550.
    (189) Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M.; Nazeeruddin, Md. K. J. Am. Chem. Soc. 2008, 130, 6259.
    (190) Li, J.-Y.; Chen, C.-Y.; Lee, C.-P.; Chen, S.-C.; Lin, T.-H.; Tsai, H.-H.; Ho, K.-C.; Wu, C.-G. Org. Lett. 2010, 12, 5454.
    (191) Li, J.-Y.; Chen, C.-Y.; Ho, W.-C.; Chen, S.-H.; Wu, C.-G. Org. Lett. 2012, 14, 5420.
    (192)(a) Qu, S.; Oin, C.; Islam, A.; Wu, Y.; Zhu, W.; Hua, J.; Tian, H.; Han, L. Chem. Commun. 2012, 48, 6972. (b) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. Energy Environ. Sci. 2012, 5, 8261. (c) Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W. Appl. Mater. Interfaces 2012, 4, 1822. (d) Ying, W.; Guo, F.; Li, J.; Zhang, Q.; Wu, W.; Tian, H.; Hua, J. Appl. Mater. Interfaces 2012, 4, 4215.
    (193)(a) Cheng, Y.-J.; Yang, S.-H.; Hsu. C.-S. Chem. Rev. 2009, 109, 5868. (b) Chen, Y.-L.; Chang, C.-Y.; Cheng, Y.-J.; Hsu, C.-S. Chem. Mater. 2012, 24, 3964. (c) Cheng, Y.-J.; Wu, J.-S.; Shih, P.-I.; Chang, C.-Y.; Jwo, P.-C.; Kao, W.-S.; Hsu, C.-S. Chem. Mater. 2011, 23, 2361. (d) Wu, J.-S.; Cheng, Y.-J.; Dubosc, M.; Hsieh, C.-H.; Chang, C.-Y.; Hsu, C.-S. Chem. Commun. 2010, 46, 3259. (e) Cheng, Y.-J.; Cheng, S.-W.; Chang, C.-Y.; Kao, W.-S.; Liao, M.-H.; Hsu, S.-C. Chem. Commun. 2012, 48, 3203.
    (194) Ting, H.-C.; Tsai, C.-H.; Chen, J.-H.; Lin, L.-Y.; Chou, S.-H.; Wong, K.-T.; Huang, T.-W. and Wu, C.-C. Org. Lett. 2012, 14, 6338.
    (195) Chen, J.-H.; Tsai, C.-H.; Wang, S.-A.; Lin, Y.-Y.; Huang, T.-W.; Chiu, S.-F.; Wu, C.-C.; Wong, K.-T. J. Org. Chem. 2011, 76, 8977.
    (196) Lin, L.-Y.; Tsai, C.-H.; Wong, K.-T.; Huang, T.-W.; Hsieh, L.; Liu, S.-H.; Lin, H.-W.; Wu, C.-C.; Chou, S.-H.; Chen, S.-H.; Tsai, A.-I. J. Org. Chem. 2010, 75, 4778.
    (197) Shen, P.; Tang, Y.; Jiang, S.; Chen, H.; Zheng, X.; Wang, X.; Zhao, B.; Tan, S. Org. Electronics 2011, 12, 125.
    (198) Qin, C.; Islam, A.; Han, L. J. Mater. Chem. 2012, 22, 19236.
    (199)(a) Karlsson, K. M.; Jiang, X.; Eriksson, S. K.; Gabrielsson, E.; Rensmo, H.; Hagfeldt, A. Sun, L. Chem. Eur. J. 2011, 17, 6415. (b) Tian, H.; Bora, I.; Jiang, X.; Gabrielsson, E.; Karlsson, K. M.; Hagfeldt, A.; Sun, L. J. Mater. Chem. 2011, 21, 12462.
    (200)(a) Bai, Y.; Zhang, J.; Zhou, D.; Wang, Y.; Zhang, M.; Wang, P. J. Am. Chem. Soc. 2011, 133, 11442–11445. (b) Yum, J.-H.; Baranoff, E.; Kessler, F.; Moehl, T.; Ahmad, S.; Bessho, T.; Marchioro, A.; Ghadiri, E.; Moser, J.-E.; Yi, C.; Nazeeruddin, M. K.; Grätzel, M. Nature Commun. 2012, 631(3), 1-8.
    (201) Sharma, G. D.; Roy, M. S.; Singh, S. P. J. Mater. Chem. 2012, 22, 18788.
    (202) Yang, J.; Guo, F.; Hua, J.; Li, X.; Wu, W.; Qu, Y.; Tian, H. J. Mater. Chem. 2012, 22, 24356.
    (203) Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K. J. Am. Chem. Soc. 2006, 128(44), 14256-14257.
    (204) S. Cai; G. Tian; X. Li; J. Su; H. Tian J. Mater. Chem. A 2013, 1, 11295.
    (205) H. Zhu; W. Li; Y. Wu; B. Liu; S. Zhu; X. Li; H. Ågren; W. Zhu ACS Sustainable Chem. Eng. 2014, 2, 1026.
    (206) J. Mao; J. Yang; J. Teuscher; T. Moehl; C. Yi; Robin H.-B.; P. Comte; C. Grätzel; J. Hua; S. M. Zakeeruddin; H. Tian; M. Grätzel J. Phys. Chem. C 2014, 118, 17090.
    (207) Chao, W.-S.; Liao, K.-H.; Chen, C.-T.; Huang, W.-K.; Lan, C.-M.; Eric Diau, W.-G. Chem. Commun. 2012, 48, 4884.
    (208)(a) Lan, C.-M.; Wu, H.-P.; Pan, T.-Y.; Chang, C.-W.; Chao, W.-S.; Chen, C.-T.; Wang, C.-L.; Lin, C.-Y.; Eric Diau, W.-G. Energy Environ. Sci. 2012, 5, 6460. (b) Wu, H.-P.; Ou, Z.-W.; Pan, T.-Y.; Lan, C.-M.; Huang, W.-K.; Lee, H.-S.; Reddy, N. M.; Chen, C.-T.; Chao, W.-S.; Yeh, C.-Y.; Eric Diau, W.-G. Energy Environ. Sci. 2012, 5, 9843.
    (209) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
    (210) M. Jørgensen; F. C. Krebs J. Org. Chem. 2005, 70, 6004.
    (211) L.-Y. Lin; C.-W. Lu; W.-C. Huang; Y.-H. Chen; H.-W. Lin; K.-T. Wong Org. Lett. 2011, 13, 4962.
    (212) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570.
    (213) W. Zhu; Y. Wu; S. Wang; W. Li; X. Li; J. Chen; Z.-S. Wang; H. Tian Adv. Funct. Mater. 2011, 21, 756.
    (214) S. Haid; M. Marszalek; A. Mishra; M. Wielopolski; J. Teuscher; J.-E. Moser; Robin H.-B.; S. M. Zakeeruddin; M. Grätzel; P. Bäuerle Adv. Funct. Mater. 2012, 22, 1291.
    (215)(a) M. Velusamy; K. R. J. Thomas; J. T. Lin; Y. C. Hsu; K. C. Ho Org. Lett. 2005, 7, 1899. (b) J. Hou; H.-Y. Chen; S. Zhang; G. Li; Y. Yang J. Am. Chem. Soc. 2008, 130, 16144. (c) W. W. Li; C. Du; F. H. Li; Y. Zhou; M. Fahlman; Z. S. Bo; F. L. Zhang Chem. Mater. 2009, 21, 5327. (d) P. M. Beaujuge; W. Pisula; H. N. Tsao; S. Ellinger; K. Müllen; J. R. Reynolds J. Am. Chem. Soc. 2009, 131, 7514. (e) Z. M. Tang; T. Lei; K. J. Jiang; Y. L. Song; J. Pei Chem. Asia J. 2010, 5, 1911.
    (216) Jones, G. II; Jackson, W. R.; Choi, C.-Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294.
    (217) Reynolds, G. A.; Drexhage, K. H. Optics Commun., 1975, 13, 222.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE