簡易檢索 / 詳目顯示

研究生: 黃于珊
Huang, Yu-Shan
論文名稱: 以生化及細胞分析來探討亞歷山大疾病之GFAP突變蛋白對星狀細胞的影響
Biochemical and cellular analyses to study the effects of Alexander disease-associated GFAP mutations in astrocytes
指導教授: 彭明德
Perng, Ming-Der
口試委員: 焦傳金
Chiao, Chuan-Chin
高茂傑
Kao, Mou-Chieh
劉銀樟
Liu, Yin-Chang
黃兆祺
Hwang, Eric
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 105
中文關鍵詞: 膠質纖維酸性蛋白星狀膠質細胞歷山大疾病突變
外文關鍵詞: Glial Fibrillary Acidic Protein, Astrocyte, Alexander disease, Mutations
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膠質纖維酸性蛋白(GFAP)是第III型的中間絲蛋白,主要是存在在中樞神經系統的星狀膠質細胞中。GFAP的功能是細胞骨架,從細胞核延伸到細胞膜,使細胞成形。過去已經報導突變的GFAP與某些疾病有很多關係;最著名的是亞歷山大疾病(AxD),一種罕見的神經退行性疾病,多發於兒童。AxD的特徵是星形膠質細胞內存在大量的膠質聚集,稱Rosenthal fibers,由GFAP、αB-crystallin 和HSP27、及其他未鑑定的蛋白質所組成。有許多報導指出62種不同的GFAP突變,其中一些是missense或frame-shift mutations。然而,GFAP突變的Transient expression和動物模型對於表現出phenotype(在AxD中的Rosenthal fibers)有一些挑戰和困難。為此,我們在小鼠DBT細胞建立了tet -on系統來表現GFAP,接著又建立了pLEX -MCS病毒來感染大鼠星狀細胞進而表現GFAP。 在tet -on系統中,我們發現GFAP突變R416W的細胞質聚集增加了細胞活力,並通過Autophagy和UPS來分解蛋白。在 PLEX -MCS病毒感染系統,我們發現,某些不同類型的突變GFAP(Δ4,κGFAP,IDF,ΔT 和E312 *)的聚集會導致的大鼠星形細胞細胞中的線粒體也聚集。我們另外發展出特定的小鼠GFAP專一性抗體以檢測來自轉基因動物,人類患者或是AxD動物模型中的GFAP。


    Glial Fibrillary Acidic Protein (GFAP) is type III intermediate filament and major astrocytic protein in central nerve system. The functions of GFAP are cytoskeleton that extend from nucleus to cell membrane to give cells their shape. Mutant GFAPs have been described to have lots of relation with some disorders; most famous is the Alexander disease (AxD), a rare neurodegenerative disease mostly in children. AxD is the presence of inclusion bodies within astrocytes known as Rosenthal fibers, consisting of ubiquitinated GFAP, the small stress proteins αB-crystallin and HSP27, and likely other unidentified proteins. There are many reports point out 62 different GFAP mutation, some of them are missense or frame-shift mutations. However, transient expression system and animal model for GFAP mutation have some challenge to show the phenotype of inclusion (Rosenthal fiber). For this reason, we have stablished the doxycycline inducible tet-on system in mouse DBT stable cell lines and pLEX-MCS lentivirus infection system in rat primary astrocyte cells. In tet-on system, we found the cytoplasmic aggregation of GFAP mutant R416W (the amino acid residue 416 Arginine was changed to Tryptophan) increased the cell viability and degraded by autophagy and UPS synchronously. In pLEX-MCS lentivirus infection system, we demonstrated that different types of mutants GFAP (∆4, κGFAP, IDF, ∆T and E312*) aggregations would cause mitochondrial co-localization in rat primary astrocyte cells. Moreover, we characterized the GFAP antibody epitope mapping and generated the mouse GFAP-specific antibody to detect GFAP from the samples of the transgenic animal, human patients, and cell-based models of AxD.

    Table of contents Abstract………………………………………….………………………Ⅰ 摘要……………………………………………………………………Ⅱ Acknowledgement……………………………….……….……………..Ⅲ Table of contents…………………………………..…………………….Ⅳ Chapter 1: Introduction…………………………….……………………..1 1.1 Astrocyte………………………………………..…………………….1 1.2 Glial fibrillary acidic protein (GFAP)……………….………………..2 1.3 Neurological disorder Alexander disease (AxD)…….………………..3 1.4 GFAP mutations…………………………………….………...………4 1.5 GFAP mutants cell models………………………….…………...……5 1.6 GFAP mutants animal model……………………….……………..….6 1.6.1 Overexpression of wild type human GFAP in transgenic mice….......6 1.6.2 Expression of GFAP mutants knockin mice and Drosophila model...7 1.7 GFAP-specific antibodies…………………………………………….9 1.8 Specific aims of this study…………………………………………….9 Chapter 2: MATERIALS AND METHODS………………………….…10 2.1 Plasmids construction………………………………………….……10 2.2 Site-directed mutagenesis……………………………………..……..11 2.3 Cell cultures…………………………………………………...…….11 2.4 Establishment of Tet-on inducible DBT stable cell lines that express GFAP…………………………………………………..………………..12 2.5 Rat/mouse primary astrocyte cells…………………………….……..12 2.6 Rat primary neurons…………………………………...…………….13 2.7 Lentiviral production and transduction………………………….…...13 2.9 Immunofluorescence (IF) microscopy……………………..………..14 2.10 SDS-PAGE and Western blotting (WB)………………….…..…….15 2.11 Flow cytometry…………………………………………...………..16 2.12 Colloidal coomassie blue G-250 protein stain…………….………..16 2.13 Protein identification by mass spectrometry……………..…………17 2.14 MTT assay…………………………………………….……………18 2.15 Subcellular fractionation…………………………………..……….18 2.16 Live cell staining with MitoTraker® Red……………..……………19 2.17 Statistics………………………………………………...………….19 Chapter 3: RESULTS……………………………………….…….……..20 3.1 Establishment of stable clones of doxycycline inducible Tet-on human wild type and mutant R416W GFAP in mouse DBT cell lines……...……20 3.2 Cell aggregation patterns in tet-on R416W GFAP in DBT stable clones…………………………………………………………...……….21 3.3 Cell viability was increased tet-on R416W GFAP in DBT stable clones………………………………………………………...………….21 3.4 GFAP proteolytic fragment was increased in tet-on R416W GFAP DBT stable clone after induction…………………………..…………….……22 3.5 Mass spectrometric identification of GFAP in inducible DBT stable cells………………………………………………………….…………..23 3.6 Involvement of ubiquitin-proteasome system (UPS) and autophagy in inducible DBT stable cells…………………………………..…………..23 3.7 To investigate the distribution of GFAP in relation to mitochondria by transient expression and co-stained mitotracker in primary astrocytes..…26 3.8 Aggregation formations of mutant GFAPs by lentivirus infection in rat primary cells……………………………………………...………….….27 3.9 To investigate the distribution of GFAP in relation to mitochondria by lentivirus infection and co-infected MitoDsRed in primary astrocytes.....29 3.10 Involvement of autophagy and apoptosis in GFAPs…………….….30 3.11 Construction of GFAP variants for GFAP antibody epitope mapping……………………………………………………...………….31 3.12 GFAP and the mouse-specific sequence used for antibody generation……………………………………………………...………..32 3.13 Validation of mGFAP antibody by immunoblotting using samples from cell lysates, transgenic mice overexpressing hGFAP and R236H GFAP knock-in mice…………………………………………..….……..32 3.14 Validation of mGFAP antibody in immunofluorescence using samples from DBT ten-on cell lines and primary rat and mouse astrocyte cells………………………………………………………….…………..34 Chapter 4: Discussion………………………………………...…………35 4.1 R416W GFAP mutant…………………………………….…...……..35 4.2 Tet-on system to GFAP mutant……………………………..………..37 4.3 Mass spectrometric analysis………………………………...……….39 4.4 Lentiviral transduction of GFAP into primary astrocytes…….……...41 4.5 Mutant GFAP cause disease by promoting GFAP aggregation…....…43 4.6 Strategies for reducing GFAP expression………………………....…46 4.7 Mitochondria and GFAP mutants………………………………....…48 4.8 GFAP epitope mapping…………………………………………..….51 References……………………………………………………...……….54 Figures…………………………………………………………….…….69 Tables………………………………………………………………..…..88 Appendix……………………………………………………………..…92

    Alexander, W.S. 1949. Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant. Brain. 72, 373-381, 373 pl.
    Bachetti, T., E. Di Zanni, P. Balbi, P. Bocca, I. Prigione, G.A. Deiana, A. Rezzani, I. Ceccherini, and G. Sechi. 2010. In vitro treatments with ceftriaxone promote elimination of mutant glial fibrillary acidic protein and transcription down-regulation. Exp Cell Res. 316:2152-65.
    Balcarek, J.M., and Cowan, N.J. 1985. Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multigene family. Nucleic Acids Res. 13, 5527-5543.
    Brenner, M., Johnson, A.B., Boespflug-Tanguy, O., Rodriguez, D., Goldman, J.E., and Messing, A. 2001. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 27, 117-120.
    Brenner, M., J.E. Goldman, R.A. Quinlan, and A. Messing. 2008. Alexander disease: a genetic disorder of astrocytes. In Astrocytes in pathophysiology of the nervous system. V.H. Parpura and P.G. Haydon, editors. Springer, Boston, Massachusetts, USA.
    Brownlees, J., S. Ackerley, A.J. Grierson, N.J. Jacobsen, K. Shea, B.H. Anderton, P.N. Leigh, C.E. Shaw, and C.C. Miller. 2002. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. Hum Mol Genet. 11:2837-44.
    Caceres-Marzal, C., J. Vaquerizo, E. Galan, and S. Fernandez. 2006. Early mitochondrial dysfunction in an infant with Alexander disease. Pediatr Neurol. 35:293-6.
    Capetanaki, Y., S. Papathanasiou, A. Diokmetzidou, G. Vatsellas, and M. Tsikitis. 2015. Desmin related disease: a matter of cell survival failure. Curr Opin Cell Biol. 32C:113-120.
    Castellani, R.J., G. Perry, P.L. Harris, M.L. Cohen, L.M. Sayre, R.G. Salomon, and M.A. Smith. 1998. Advanced lipid peroxidation end-products in Alexander's disease. Brain Res. 787:15-8.
    Chen, M.H., T.L. Hagemann, R.A. Quinlan, A. Messing, and M.D. Perng. 2013. Caspase cleavage of GFAP produces an assembly-compromised proteolytic fragment that promotes filament aggregation. ASN Neuro.
    Chen, Y.S., S.C. Lim, M.H. Chen, R.A. Quinlan, and M.D. Perng. 2011. Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Exp Cell Res. 317:2252-66.
    Cho, W., M. Brenner, N. Peters, and A. Messing. 2010. Drug screening to identify suppressors of GFAP expression. Hum Mol Genet. 19:3169-78.
    Cho, W., T.L. Hagemann, D.A. Johnson, J.A. Johnson, and A. Messing. 2009. Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein. J Neurochem. 110:343-51.
    Cho, W., and A. Messing. 2009. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res. 315:1260-72.
    Cornell-Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J. (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science (New York, NY). 247, 470-473.
    Cunningham, R., P. Jany, A. Messing, and L. Li. 2013. Protein changes in immunodepleted cerebrospinal fluid from a transgenic mouse model of Alexander disease detected using mass spectrometry. J Proteome Res. 12:719-28.
    Davidson, B.L., and X.O. Breakefield. 2003. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. 4:353-64.
    Der Perng, M., Su, M., Wen, S.F., Li, R., Gibbon, T., Prescott, A.R., Brenner, M., and Quinlan, R.A. 2006. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet. 79, 197-213.
    Flint, D., R. Li, L.S. Webster, S. Naidu, E. Kolodny, A. Percy, M. van der Knaap, J.M. Powers, J.F. Mantovani, J. Ekstein, J.E. Goldman, A. Messing, and M. Brenner. 2012. Splice site, frameshift, and chimeric GFAP mutations in Alexander disease. Hum Mutat. 33:1141-8.
    Gilbert, S., A. Loranger, N. Daigle, and N. Marceau. 2001. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol. 154:763-73.
    Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 89:5547-51.
    Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen, and H. Bujard. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science. 268:1766-9.
    Green, L., I.R. Berry, A.M. Childs, H. McCullagh, S. Jose, D. Warren, I. Craven, N. Camm, K. Prescott, M.S. van der Knaap, E. Sheridan, and J.H. Livingston. 2018. Whole Exon Deletion in the GFAP Gene Is a Novel Molecular Mechanism Causing Alexander Disease. Neuropediatrics. 49:118-122.
    Hagemann, T.L., W.C. Boelens, E.F. Wawrousek, and A. Messing. 2009. Suppression of GFAP toxicity by alphaB-crystallin in mouse models of Alexander disease. Hum Mol Genet. 18:1190-9.
    Hagemann, T.L., J.X. Connor, and A. Messing. 2006. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response. J Neurosci. 26:11162-73.
    Hagemann, T.L., S.A. Gaeta, M.A. Smith, D.A. Johnson, J.A. Johnson, and A. Messing. 2005. Gene expression analysis in mice with elevated glial fibrillary acidic protein and Rosenthal fibers reveals a stress response followed by glial activation and neuronal dysfunction. Hum Mol Genet. 14:2443-58.
    Hagemann, T.L., B. Powers, C. Mazur, A. Kim, S. Wheeler, G. Hung, E. Swayze, and A. Messing. 2018. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann Neurol. 83(1):27-39.
    Head, M.W., and J.E. Goldman. 2000. Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol Appl Neurobiol. 26:304-12.
    Heaven, M.R., D. Flint, S.M. Randall, A.A. Sosunov, L. Wilson, S. Barnes, J.E. Goldman, D.C. Muddiman, and M. Brenner. 2016. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 15:2265-82.
    Hedberg, K.K., and L.B. Chen. 1986. Absence of intermediate filaments in a human adrenal cortex carcinoma-derived cell line. Exp Cell Res. 163:509-17.
    Hol, E.M., and Y. Capetanaki. 2017. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harb Perspect Biol. 9.
    Hsiao, V.C., R. Tian, H. Long, M. Der Perng, M. Brenner, R.A. Quinlan, and J.E. Goldman. 2005. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP. J Cell Sci. 118:2057-65.
    Israeli, E., D.I. Dryanovski, P.T. Schumacker, N.S. Chandel, J.D. Singer, J.P. Julien, R.D. Goldman, and P. Opal. 2016. Intermediate filament aggregates cause mitochondrial dysmotility and increase energy demands in giant axonal neuropathy. Hum Mol Genet. 25(11):2143-2157.
    Iwaki, T., A. Iwaki, J. Tateishi, Y. Sakaki, and J.E. Goldman. 1993. Alpha B-crystallin and 27-kd heat shock protein are regulated by stress conditions in the central nervous system and accumulate in Rosenthal fibers. Am J Pathol. 143:487-95.
    Iwaki, T., A. Kume-Iwaki, R.K. Liem, and J.E. Goldman. 1989. Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. Cell. 57:71-8.
    Jany, P.L., G.E. Agosta, W.S. Benko, J.C. Eickhoff, S.R. Keller, W. Koehler, D. Koeller, S. Mar, S. Naidu, J. Marie Ness, D. Pareyson, D.L. Renaud, E. Salsano, R. Schiffmann, J. Simon, A. Vanderver, F. Eichler, M.S. van der Knaap, and A. Messing. 2015. CSF and Blood Levels of GFAP in Alexander Disease(1,2,3). eNeuro. 2.
    Jany, P.L., T.L. Hagemann, and A. Messing. 2013. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro. 5:e00109.
    Johnson, A.B., and M. Brenner. 2003. Alexander's disease: clinical, pathologic, and genetic features. J Child Neurol. 18:625-32.
    Johnson, A.B., and Bettica, A. 1989. On-grid immunogold labeling of glial intermediate filaments in epoxy-embedded tissue. Am J Anat. 185, 335-341.
    Jones, J.R., L. Kong, M.G.t. Hanna, B. Hoffman, R. Krencik, R. Bradley, T. Hagemann, J. Choi, M. Doers, M. Dubovis, M.A. Sherafat, A. Bhattacharyya, C. Kendziorski, A. Audhya, A. Messing, and S.C. Zhang. 2018. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes. Cell Rep. 25:947-958 e4.
    Kopito, R.R. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524-30.
    Koyama, Y., and J.E. Goldman. 1999. Formation of GFAP cytoplasmic inclusions in astrocytes and their disaggregation by alphaB-crystallin. Am J Pathol. 154:1563-72.
    Kutner, R.H., X.Y. Zhang, and J. Reiser. 2009. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc. 4:495-505.
    Kwong, J.Q., M.F. Beal, and G. Manfredi. 2006. The role of mitochondria in inherited neurodegenerative diseases. J Neurochem. 97:1659-75.
    Laemmli, U.K. 1970. Cleavage of structureal proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-685
    Lange, S.C., L.K. Bak, H.S. Waagepetersen, A. Schousboe, and M.D. Norenberg. 2012. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res. 37:2569-88.
    LaPash Daniels, C.M., E. Paffenroth, E.V. Austin, K. Glebov, D. Lewis, J. Walter, and A. Messing. 2015. Lithium Decreases Glial Fibrillary Acidic Protein in a Mouse Model of Alexander Disease. PLoS One. 10:e0138132.
    Ledeen, R.W., and G. Chakraborty. 1998. Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis. Neurochem Res. 23:277-89.
    Lee, V.M., C.D. Page, H.L. Wu, and W.W. Schlaepfer. 1984. Monoclonal antibodies to gel-excised glial filament protein and their reactivities with other intermediate filament proteins. J Neurochem. 42:25-32.
    Li, L., E. Tian, X. Chen, J. Chao, J. Klein, Q. Qu, G. Sun, G. Sun, Y. Huang, C.D. Warden, P. Ye, L. Feng, X. Li, Q. Cui, A. Sultan, P. Douvaras, V. Fossati, N.E. Sanjana, A.D. Riggs, and Y. Shi. 2018. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell. 23:239-251 e6.
    Li, M., N. Husic, Y. Lin, and B.J. Snider. 2012. Production of lentiviral vectors for transducing cells from the central nervous system. J Vis Exp:e4031.
    Li, R., A.B. Johnson, G. Salomons, J.E. Goldman, S. Naidu, R. Quinlan, B. Cree, S.Z. Ruyle, B. Banwell, M. D'Hooghe, J.R. Siebert, C.M. Rolf, H. Cox, A. Reddy, L.G. Gutierrez-Solana, A. Collins, R.O. Weller, A. Messing, M.S. van der Knaap, and M. Brenner. 2005. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol. 57:310-26.
    Liedtke, W., W. Edelmann, P.L. Bieri, F.C. Chiu, N.J. Cowan, R. Kucherlapati, and C.S. Raine. 1996. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron. 17:607-15.
    Lin, N.H., Y.S. Huang, P. Opal, R.D. Goldman, A. Messing, and M.D. Perng. 2016. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 27:3980-3990.
    Lin, N.H., A. Messing, and M.D. Perng. 2017. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS One. 12:e0180694.
    Mahammad, S., S.N. Murthy, A. Didonna, B. Grin, E. Israeli, R. Perrot, P. Bomont, J.P. Julien, E. Kuczmarski, P. Opal, and R.D. Goldman. 2013. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest. 123:1964-75.
    McCall, M.A., R.G. Gregg, R.R. Behringer, M. Brenner, C.L. Delaney, E.J. Galbreath, C.L. Zhang, R.A. Pearce, S.Y. Chiu, and A. Messing. 1996. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 93:6361-6.
    Messing, A., M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, and M. Brenner. 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol. 152:391-8.
    Mignot, C., C. Delarasse, S. Escaich, B. Della Gaspera, E. Noe, E. Colucci-Guyon, C. Babinet, M. Pekny, P. Vicart, O. Boespflug-Tanguy, A. Dautigny, D. Rodriguez, and D. Pham-Dinh. 2007. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease. Exp Cell Res. 313:2766-79.
    Milner, D.J., M. Mavroidis, N. Weisleder, and Y. Capetanaki. 2000. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J Cell Biol. 150:1283-98.
    Milner, D.J., G. Weitzer, D. Tran, A. Bradley, and Y. Capetanaki. 1996. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J Cell Biol. 134:1255-70.
    Moody, L.R., G.A. Barrett-Wilt, M.R. Sussman, and A. Messing. 2017. Glial Fibrillary Acidic Protein Exhibits Altered Turnover Kinetics in a Mouse Model of Alexander Disease. J Biol Chem. 294:5814-5824.
    Nam, T.S., J.H. Kim, C.H. Chang, W. Yoon, Y.S. Jung, S.Y. Kang, B.A. Shin, M.D. Perng, S.Y. Choi, and M.K. Kim. 2015. Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. Eur J Hum Genet. 23:72-8.
    Nekrasova, O.E., M.G. Mendez, I.S. Chernoivanenko, P.A. Tyurin-Kuzmin, E.R. Kuczmarski, V.I. Gelfand, R.D. Goldman, and A.A. Minin. 2011. Vimentin intermediate filaments modulate the motility of mitochondria. Mol Biol Cell. 22:2282-9.
    Nobuhara, Y., K. Nakahara, I. Higuchi, T. Yoshida, S. Fushiki, M. Osame, K. Arimura, and M. Nakagawa. 2004. Juvenile form of Alexander disease with GFAP mutation and mitochondrial abnormality. Neurology. 63:1302-4.
    Ousman, S.S., B.H. Tomooka, J.M. van Noort, E.F. Wawrousek, K.C. O'Connor, D.A. Hafler, R.A. Sobel, W.H. Robinson, and L. Steinman. 2007. Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature. 448:474-9.
    Paixao, S., and Klein, R. 2010. Neuron-astrocyte communication and synaptic plasticity. Curr Opin Neurobiol. 20, 466-473.
    Pekny, M., P. Leveen, M. Pekna, C. Eliasson, C.H. Berthold, B. Westermark, and C. Betsholtz. 1995. Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J. 14:1590-8.
    Perng, M., M. Su, S.F. Wen, R. Li, T. Gibbon, A.R. Prescott, M. Brenner, and R.A. Quinlan. 2006. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27. Am J Hum Genet. 79:197-213.
    Perng, M.D., Choi, S.Y., and Kim, M.K. 2015. Identification of a novel nonsense mutation in the rod domain of GFAP that is associated with Alexander disease. European journal of human genetics: Eur J Hum Genet. 23, 72-78.
    Perng, M.D., L. Cairns, I.P. van den, A. Prescott, A.M. Hutcheson, and R.A. Quinlan. 1999. Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin. J Cell Sci. 112 ( Pt 13):2099-112.
    Perng, M.D., S.F. Wen, T. Gibbon, J. Middeldorp, J. Sluijs, E.M. Hol, and R.A. Quinlan. 2008. Glial fibrillary acidic protein filaments can tolerate the incorporation of assembly-compromised GFAP-delta, but with consequences for filament organization and alphaB-crystallin association. Mol Biol Cell. 19:4521-33.
    Quinlan, R.A., Brenner, M., Goldman, J.E., and Messing, A. 2007. GFAP and its role in Alexander disease. Exp Cell Res. 313, 2077-2087.
    Quinlan, R.A., and Franke, W.W. 1983. Molecular interactions in intermediate-sized filaments revealed by chemical cross-linking. Heteropolymers of vimentin and glial filament protein in cultured human glioma cells. Eur J Biochem. 132, 477-484.
    Reeves, S.A., Helman, L.J., Allison, A., and Israel, M.A. 1989. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 86, 5178-5182.
    Rodriguez, D., Gauthier, F., Bertini, E., Bugiani, M., Brenner, M., N'Guyen, S., Goizet, C., Gelot, A., Surtees, R., Pedespan, J.M., et al. 2001. Infantile Alexander disease: spectrum of GFAP mutations and genotype-phenotype correlation. Am J Hum Genet. 69, 1134-1140.
    Russo, L.S., Jr., Aron, A., and Anderson, P.J. 1976. Alexander's disease: a report and reappraisal. Neurology. 26, 607-614.
    Sakuma, T., M.A. Barry, and Y. Ikeda. 2012. Lentiviral vectors: basic to translational. Biochem J. 443:603-18.
    Scotter, E. L., Vance, C., Nishimura, A.L., Lee, Y.B., Chen, H.J., Urwin, H., Sardone, V., Mitchell, J.C., Rogelj, B., Rubinsztein, D.C., Shaw, C.E.2014. Differential roles of the ubiquitin proteasome system and autophagy in the clearance of soluble and aggregated TDP-43 species. J Cell Sci. 15;127(Pt 6):1263-78.
    Shibuki, K., H. Gomi, L. Chen, S. Bao, J.J. Kim, H. Wakatsuki, T. Fujisaki, K. Fujimoto, A. Katoh, T. Ikeda, C. Chen, R.F. Thompson, and S. Itohara. 1996. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron. 16:587-99.
    Steinman, L., J.B. Rothbard, and M.P. Kurnellas. 2014. Janus faces of amyloid proteins in neuroinflammation. J Clin Immunol. 34 Suppl 1:S61-3.
    Tang, G., M.D. Perng, S. Wilk, R. Quinlan, and J.E. Goldman. 2010. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition. J Biol Chem. 285:10527-37.
    Tang, G., Z. Xu, and J.E. Goldman. 2006. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem. 281:38634-43.
    Tang, G., Z. Yue, Z. Talloczy, T. Hagemann, W. Cho, A. Messing, D.L. Sulzer, and J.E. Goldman. 2008. Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways. Hum Mol Genet. 17:1540-55.
    Tian, R., X. Wu, T.L. Hagemann, A.A. Sosunov, A. Messing, G.M. McKhann, and J.E. Goldman. 2010. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol. 69:335-45.
    Tian, R., Gregor, M., Wiche, G., and Goldman, J.E. 2006. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease. Am J Pathol. 168, 888-897.
    Toivola, D.M., G.Z. Tao, A. Habtezion, J. Liao, and M.B. Omary. 2005. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol. 15:608-17.
    Tomokane, N., Iwaki, T., Tateishi, J., Iwaki, A., and Goldman, J.E. 1991. Rosenthal fibers share epitopes with alpha B-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am J Pathol. 138, 875-885.
    Uttam, J., E. Hutton, P.A. Coulombe, I. Anton-Lamprecht, Q.C. Yu, T. Gedde-Dahl, Jr., J.D. Fine, and E. Fuchs. 1996. The genetic basis of epidermolysis bullosa simplex with mottled pigmentation. Proc Natl Acad Sci U S A. 93:9079-84.
    van der Knaap, M.S., V. Ramesh, R. Schiffmann, S. Blaser, M. Kyllerman, A. Gholkar, D.W. Ellison, J.P. van der Voorn, S.J. van Dooren, C. Jakobs, F. Barkhof, and G.S. Salomons. 2006. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 66:494-8.
    Verhoef, L. G. G. C., Lindsten, K., Masucci, M. G. and Dantuma, N. P. 2002. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689-2700.
    Wagner, O.I., J. Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, and J.F. Leterrier. 2003. Mechanisms of mitochondria-neurofilament interactions. J Neurosci. 23:9046-58.
    Wang, L., K.J. Colodner, and M.B. Feany. 2011. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an alexander disease model. J Neurosci. 31:2868-77.
    Wang, L., T.L. Hagemann, H. Kalwa, T. Michel, A. Messing, and M.B. Feany. 2015. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nat Commun. 6:8966.
    Wang, L., J. Xia, J. Li, T.L. Hagemann, J.R. Jones, E. Fraenkel, D.A. Weitz, S.C. Zhang, A. Messing, and M.B. Feany. 2018. Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nat Commun. 9:1899.
    Winter, L., C. Abrahamsberg, and G. Wiche. 2008. Plectin isoform 1b mediates mitochondrion-intermediate filament network linkage and controls organelle shape. J Cell Biol. 181:903-11.
    W, R. 189). Uber eine eigenthumliche, mit Sylingomyelie complicirte Geschwulst des Ruckenmarks. Beitr Pathol Anat. 23, 111-143.
    Zhou, X., M. Vink, B. Klaver, B. Berkhout, and A.T. Das. 2006. Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther. 13:1382-90.

    QR CODE