簡易檢索 / 詳目顯示

研究生: 韓易臻
Han, Yi-Jen
論文名稱: 改質聚苯并咪唑高分子薄膜及其應用於滲透蒸發分離程序之研究
Surface-modified polybenzimidazole membranes for liquid-liquid pervaporation separation
指導教授: 劉英麟
口試委員: 劉英麟
鄭如忠
呂幸江
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 滲透蒸發聚苯并咪唑高分子薄膜表面改質
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對聚苯并咪唑(PBI)高分子薄膜進行改質,以應用於滲透蒸發分離程序。第一部分係利用化學反應將幾丁聚醣(CS)高分子鏈接枝於PBI薄膜表面,以增進其表面親水性,所得到的PBI高分子薄膜應用於異丙醇水溶液的滲透蒸發脫水程序,並利用不同進料組成與進料溫度,探討其分離效能與薄膜穩定性,而本研究結果改質後PBI-CS薄膜於滲透量上提升約1.6倍,且其分離效能並未降低,並且本研究之PBI-CS薄膜於廣泛的進料濃度下(30 wt%至90 wt% IPA水溶液)與廣泛的進料操作溫度(25℃至70℃)下皆有相當好的薄膜穩定性。第二部分係利用具有benzoxazine反應官能基之高分子PBz作為交聯劑,先將PBI薄膜交聯後,再利用表面引發自由基聚合反應將親水性的聚磺酸化苯乙烯高分子鏈接枝於交聯的PBI薄膜表面,同時增加薄膜的穩定性和親水性,以改善PBI膜應用於四氫呋喃(THF)水溶液的滲透蒸發脫水程序,而本研究表面改質之親水性的聚磺酸化苯乙烯高分子鏈薄膜(PBI/30 wt% PBz-PNaSS)於滲透量上對於進料濃度為70 wt%至90 wt% THF水溶液可節省約30%能源消耗,並且於廣泛的進料操作溫度(25℃至55℃)下皆能有相當好的薄膜穩定性。


    中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1 研究動機及目的 1 第二章 文獻回顧 4 2-1 滲透蒸發分離程序 4 2-2 PBI簡介 6 2-2-1 PBI薄膜於滲透蒸發分離程序的應用 7 2-2-2 親水性幾丁聚醣高分子於滲透蒸發程序之應用 10 2-2-3 以滲透蒸發方式分離四氫呋喃(THF)與水之混合物 13 2-2-4 臭氧處理進行表面接枝高分子和改質 16 第三章 實驗 19 3-1 實驗藥品 19 3-2 實驗儀器 22 3-3 實驗步驟 24 3-3-1 PBI合成反應 24 3-3-2 以奧士瓦黏度計測量PBI之固有黏度 26 3-3-3 PBI薄膜製備 27 3-3-4 PBI-IDD薄膜製備 27 3-3-5 PBI-CS薄膜製備 28 3-3-6 以Diels-Alder reaction合成交聯劑PBz 30 3-3-7 PBI摻混PBz交聯薄膜製備 31 3-3-8 PBI摻混交聯劑PBz並利用臭氧表面改質PNaSS薄膜製備 32 3-3-9 表面接觸角分析(Contact angle) 33 3-3-10 掃描式電子顯微鏡分析(SEM) 33 3-3-11 傅立葉轉換紅外線光譜分析儀分析(FTIR) 34 3-3-12 全反射式傅立葉轉換紅外線光譜分析儀分析(FTIR-ATR) 34 3-3-13 化學分析電子能譜儀分析(ESCA) 35 3-3-14 核磁共振光譜儀(NMR) 35 3-3-15 微差掃描卡計儀分析(DSC) 35 3-3-16 薄膜吸水率測試 (Sorption test) 36 3-3-17 薄膜交聯率測試 36 3-3-18 滲透蒸發測試 37 3-3-19 氣相色層分析儀 (GC) 39 第四章 聚苯并咪唑膜表面改質幾丁聚醣之製備及其滲透蒸發效能研究 40 4-1 薄膜製備與改質 40 4-1-1 前言 40 4-1-2 PBI結構鑑定 40 4-1-3 PBI-CS薄膜表面結構分析 43 4-1-4 PBI-CS薄膜表面親/疏水性與吸水率測試 48 4-2 PBI薄膜應用於異丙醇水溶液之滲透蒸發分離 51 4-2-1 前言 51 4-2-2 進料組成對PBI-CS膜於滲透蒸發分離效能之影響 51 4-2-3 進料溫度對PBI-CS膜滲透蒸發分離效能之影響 54 4-2-4 PBI-CS膜於滲透蒸發分離效能與文獻結果之比較 57 4-3 結論 58 第五章 聚苯并咪唑薄膜改質及其於四氫呋喃水溶液滲透蒸發分離之應用 59 5-1 結果與討論 59 5-1-1 前言 59 5-1-2 交聯劑PBz結構鑑定 59 5-1-3 PBI/PBz-PNaSS薄膜表面結構分析 61 5-1-4  PBI/PBz-PNaSS薄膜表面親/疏水性與吸水率測試 64 5-1-5 PBI/PBz薄膜交聯比率測試 67 5-1-6 PBI/PBz薄膜之拉力實驗 68 5-2 PBI薄膜應用於四氫呋喃水溶液之滲透蒸發分離 69 5-2-1 前言 69 5-2-2交聯劑PBz添加量對PBI/PBz膜於滲透蒸發分離效能之影響 69 5-2-3 進料組成對PBI/PBz-PNaSS膜於滲透蒸發分離效能之影響 71 5-2-4 進料溫度對PBI/PBz-PNaSS膜滲透蒸發分離效能之影響 73 5-2-5 PBI/PBz-PNaSS膜於滲透蒸發分離效能與文獻結果之比較 77 5-3 結論 78 參考文獻 79 著作 87

    1. S. Y. Nam, H. J. Chun, Y. M. Lee, “Pervaporation separation of water isopropanol mixture using carboxymethylated poly(vinyl alcohol)composite membranes”, J. Appl. Polym. Sci., 72 (1999) 241–249.
    2. N. Isiklan, O. Sanli, “Permeation and separation characteristics of acetic acid/water mixtures through poly(vinyl alcohol-g-itaconic acid) membranes by pervaporation, evapomeation, and temperature-difference evapomeation”, J. Appl. Polym. Sci., 93 (2004) 2322–2333.
    3. M. Rafik, A. Mas, M. F. Guimon, C. Guimon, A. Elharfi, F. Schu, “Plasma modified poly(vinyl alcohol) membranes for the dehydration of ethanol”, Polym. Int., 52 (2003) 1222–1229.
    4. J. Ge, Y. Cui, Y. Yan, W. Jiang, “The effect of structure on pervaporation of chitosan membrane”, J. Membr. Sci., 165 (2000) 75–81.
    5. W. Won, X. Feng, D. Lawless, “Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures”, J. Membr. Sci., 209 (2002) 493–508.
    6. M. G. M. Nawawi, R. Y. M. Huang, “Pervaporation dehydration of isopropanol with chitosan membranes”, J. Membr. Sci., 124 (1997) 53–62.
    7. K. Zhou, Q. Gen, G. L. Han, A. M. Zhu, Q. L. Liu, “Pervaporation of water–ethanol and methanol–MTBE mixtures using poly(vinyl alcohol)/cellulose acetate blended membranes”, J. Membr. Sci., 448 (2013) 93-101.
    8. Q. G. Zhang, W. W. Hu, A. M. Zhu, Q. L. Liu, “UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation”, RSC Adv., 3(2013) 1855–1861.
    9. Y. L. Liu, C. Y. Hsu, Y. H. Su, J. Y. Lai, “Chitosan–silica complex membranes from sulfuric acid functionalized silica nanoparticles for pervaporation dehydration of ethanol–water solutions”, Biomacromolecules, 6 (2005) 368-373.
    10. P. A. Kober, “Pervaporation, Perstillation and Percrystallization”, J. Am. Chem. Soc., 39 (1917) 944-948.
    11. J. G. Wijmans, R. W. Baker, “The solution-diffusion model: a review”, J. Membr. Sci., 107 (1995) 1-21.
    12. H. Vogel, C. S. Marvel, “Polybenzimidazoles, new thermal stable polymers”, J. Polym. Sci., 154 (1961) 511-539.
    13. Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, “High temperature proton exchange membranes based on polybenzimidazoles for fuel cells”, Prog. Polym. Sci., 34 (2009) 449-477
    14. Y. Wang, S. H. Goh, T. S. Chung, “Miscibility study of Torlon® polyamide-imide with Matrimid® 5218 polyimide and polybenzimidazole”, Polymer, 48 (2007) 2901-2909.
    15. T. S. Chung, W. F. Guo, Y. Liu, “Enhanced Matrimid membranes for pervaporation by homogenous blends with polybenzimidazole (PBI)”, J. Membr. Sci., 271 (2006) 221-231.
    16. K. Y. Wang, T. S. Chung, R. Rajagopalan, “Dehydration of tetrafluoropropanol (TFP) by pervaporation via novel PBI/BTDA-TDI/MDI co-polyimide (P84) dual-layer hollow fiber membranes”, J. Membr. Sci., 287 (2007) 60-66.
    17. G. Kung, L. Y. Jiang, Y. Wan, T. S. Chung, “Asymmetric hollow fibers by polyimide and polybenzimidazole blends for toluene/iso-octane separation”, J. Membr. Sci., 360 (2010) 303-314.
    18. Y. Wang, M. Gruender, T. S. Chung, “Pervaporation dehydration of ethylene glycol through polybenzimidazole (PBI)-based membranes. 1. Membrane fabrication”, J. Membr. Sci., 363 (2010) 149-159.
    19. G. M. Shi, T. Yang, T. S. Chung, “Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols”, J. Membr. Sci., 415-416 (2012) 577-586.
    20. G. M. Shi, Y. Wang, T. S. Chung, “Dual-layer PBI/P84 hollow fibers for pervaporation dehydration of acetone”, AIChE J., 58 (2012) 1133-1145.
    21. Y. M. Lee, E. M. Shin, “Pervaporation separation of water-ethanol through modified chitosan membranes. IV. Phosphorylated chitosan membranes”, J. Membr. Sci., 64 (1991) 145-152.
    22. R. Y. M. Huang, R. Pal, G. Y. Moon, “Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane”, J. Membr. Sci., 167 (2000) 275-289.
    23. J. Meier-Haack, W. Lenk, D. Lehmann, K. Lunkwitz, “Pervaporation separation of water/alcohol mixtures using composite membranes based on polyelectrolyte multilayer assemblies”, J. Membr. Sci., 184 (2001) 233-243.
    24. Y. L. Liu, C. H. Yu, L. C. Ma, G. C. Lin, H. A. Tsai, J. Y. Lai, “The effects of surface modifications on preparation and pervaporation dehydration performance of chitosan/polysulfone composite hollow-fiber membranes”, J. Membr. Sci., 311 (2008) 243-250.
    25. M. D. Kurkuri, S. G. Kumbar, T. M. Aminabhavi, “Synthesis and characterization of polyacrylamide-grafted sodium alginate copolymeric membranes and their use in pervaporation separation of water and tetrahydrofuran mixtures”, J. Appl. Polym. Sci., 86 (2002) 272-281.
    26. I. Ortiz, D. Gorri, C. Casado, A. Urtiaga, “Modelling of the pervaporative flux through hydrophilic membranes”, J. Chem. Technol. Biotechnol., 80 (2005) 397-405.
    27. P. S. Rao, S. Sridhar, A. Krishnaiah, “Dehydration of tetrahydrofuran by pervaporation using crosslinked PVA/PEI blend membranes”, J. Appl. Polym. Sci., 102 (2006) 1152-1161.
    28. D. A. Devi, B. Smitha, S. Sridhar, T. M. Aminabhavi, “Novel crosslinked chitosan/poly(vinylpyrrolidone) blend membranes for dehydrating tetrahydrofuran by the pervaporation technique”, J. Membr. Sci., 280 (2006) 45-53.
    29. P. Chapman, X. X. Loh, A. G. Livingston, K. Li, T. A. C. Oliveira, “Polyaniline membranes for the dehydration of tetrahydrofuran by pervaporation”, J. Membr. Sci., 309 (2008) 102-111.
    30. E. M. Scherr, A. G. MacDiarmid, S. K. Manohar, J. G. Masters, Y. Sun, X. Tang, M. A. Druy, P. J. Glatkowski, V. B. Cajipe, J. E. Fischer, K. R. Cromack, M. E. Jozefowicz, J. M. Ginder, R. P. McCall, A. J. Epstein, “Polyaniline: oriented films and fibers”, Synth. Met., 41-43 (1991) 735-738.
    31. C. Y. Tu, Y. L. Liu, K. R. Lee, J. Y. Lai, “Surface grafting polymerization and modification on poly(tetrafluoroethylene) films by means of ozone treatment”, Polymer, 46 (2005) 6976-6985.
    32. C. Y. Tu, Y. L. Liu, K. R. Lee, J. Y. Lai, “Hydrophilic surface-grafted poly(tetrafluoroethylene) membranes using in pervaporation dehydration processes”, J. Membr. Sci., 274 (2006) 47-55.
    33. C. M. Chang, Y. L. Liu, “Functionalization of multi-walled carbon nanotubes with non-reactive polymers through an ozone-mediated process for the preparation of a wide range of high performance polymer/carbon nanotube composites”, Carbon, 48 (2010) 1289-1297.
    34. C.I. Chou, Y. L. Liu, “High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain”, J. Polym. Sci., Part A: Polym. Chem., 46 (2008) 6509-6517.
    35. Y. L. Liu, Y. H. Wu, W. B. Tsai, C. C. Tsai, W. S. Chen, C. S. Wu, “Core–shell silica@chitosan nanoparticles and hollow chitosan nanospheres using silica nanoparticles as templates: Preparation and ultrasound bubble application”, Carbohydr. Polym., 84 (2011) 770-774.
    36. 黃定加著,“新編物理化學實驗上冊”,第九版,民國88年,高立圖書公司。P63-69; P109-116; P151-155。
    37. 余鐘豪, “聚四氟乙烯複合膜之製備及其滲透蒸發效能研究”, 中原大學化學工程學系碩士論文,民國96年。
    38. Suryani, Y. L. Liu, “Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes”, J. Membr. Sci., 332 (2009)121-128.
    39. E. Foldes, E. Fekete, F.E. Karasz, B. Pukanszky, “Interaction, miscibility and phase inversion in PBI/PI blends”, Polymer, 41 (2000) 975-983.
    40. G. Guerra, S. Choe, D. J. Williams, F. E. Karasz, W. J. MacKnight, “Fourier transform infrared spectroscopy of some miscible polybenzimidazole/polyimide blends”, Macromolecules, 21 (1988) 231-234.
    41. P. Musto, F. E. Karasz, W. J. MacKnight, “Hydrogen bonding in polybenzimidazole/poly(ether imide) blends: a spectroscopic study”, Macromolecules, 24 (1991) 4762-4769.
    42. T. K. Ahn, M. Kim, S. Choe, “Hydrogen-bonding strength in the blends of polybenzimidazole with BTDA- and DSDA-based polyimides”, Macromolecules, 30 (1997) 3369-3374.
    43. P. Musto, F. E. Karasz, W. J. MacKnight, “Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend”, Polymer, 34 (1993) 2934-2945.
    44. P. Musto, F. E. Karasz, W. J. MacKnight, “Hydrogen bonding in polybenzimidazole/polyimide systems: a Fourier-transform infra-red investigation using low-molecular-weight monofunctional probes”, Polymer, 30 (1989) 1012-1021.
    45. S. C. Kumbharkar, M. N. Islam, R. A. Potrekar, U. K. Kharul, “Variation in acid moiety of polybenzimidazoles: Investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials”, Polymer, 50 (2009) 1403-1413.
    46. Suryani, C. M. Chang, Y. L. Liu, Y. M. Lee, “Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells”, J. Mater. Chem., 21 (2011) 7480-7486.
    47. G. Beamson, D. Briggs, “High resolution XPS of organic polymers the scienta ESCA300 database”, John Wiley & Sons, (1992)
    48. W. Zhang, G. Li, Y. Fang, X. Wang, “Maleic anhydride surface-modification of crosslinked chitosan membrane and its pervaporation performance”, J. Membr. Sci., 295 (2007) 130-138.
    49. K. Rao, M. C. S. Subha, M. Sairam, N. N. Mallikarjuna, T. M. Aminabhavi, “Blend membranes of chitosan and poly(vinyl alcohol) in pervaporation dehydration of isopropanol and tetrahydrofuran”, J. Appl. Polym. Sci., 103 (2007) 1918–1926.
    50. Y. L. Liu, C. H. Yu, K. R. Lee, J. Y. Lai, “Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes”, J. Membr. Sci., 287 (2007) 230-236.
    51. X. Y. Qiao, T. S. Chung, “Pervaporation of water/isopropanol mixtures through polyaniline membranes doped with poly(acrylic acid)”, AIChE J., 52 (2006) 3462-3472.
    52. Y. M. Lee, S. Y. Nam, S. Y. Ha, “Chitosan/poly(tetrafluoroethylene) composite membranes using in pervaporation dehydration processes”, J. Membr. Sci., 159 (1999) 41-46.
    53. A. A. Kittur, S. S. Kulkarni, M. I. Aralaguppi, M. Y. Kariduraganavar, “Preparation and characterization of novel pervaporation membranes for the separation of water–isopropanol mixtures using chitosan and NaY zeolite”, J. Membr. Sci., 247 (2005) 75-86.
    54. Z. Gao, Y. Yue, W. Li, “Application of zeolite-filled pervaporation membrane”, Zeolites, 16 (1996) 70-74.
    55. L. C. Jheng, C. Y. Huang, S. L. C. Hsu, “Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells”, Int. J. Hydrogen Energy, 38 (2013) 1524-1534.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE