簡易檢索 / 詳目顯示

研究生: 林詠淇
Yung-Chi Lin
論文名稱: 錫銀銅無鉛銲錫與電鍍鎳磷底層金屬之富磷層相關相變化行為與相演進及即時觀測銲錫與底層金屬介面反應
Phase Transformation, Evolution of Phosphorous-rich Layer and Optimal Phosphorous Content Selection in SnAgCu Lead Free Solder/Electroplated Ni-P UBM and In-Situ Observation of Interfacial Reaction in Solder Joint
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 189
中文關鍵詞: 無鉛界面反應鎳磷鎳錫磷即時觀測
外文關鍵詞: lead-free, interfacial reaction, Ni-P, Ni-Sn-P, in-situ
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 覆晶技術(Flip Chip Technology)或金線接合(Gold Wire Bonding)搭配球腳格狀陣列(Ball Grid Array)的連接方式已經廣泛地使用在現今的微電子封裝技術中。在覆晶技術中,凸塊底層金屬(Under-Bump Metallization)的材料選擇為最重要的議題之一。鎳基的凸塊底層金屬除了與銲錫的反應速率較低外亦作為阻擋銅金屬擴散的擴散阻絕層。本研究主要利用電子顯微鏡分析探討銲錫與鎳磷凸塊底層金屬間的相變化行為與相演進情形。
    鎳基的凸塊底層金屬已廣泛地在微電子構裝產業裡使用。一般製作鎳基凸塊底層都是利用無電鍍(electroless plating)的方式在鍍製鎳基凸塊底層,由於無電鍍液裡需使用磷酸或亞磷酸,無電鍍鎳會伴隨著磷一起析鍍出。然無電鍍需要較長的鈍化處理及貴金屬鹽類的敏化處理,故擬嘗試以較有效率的電鍍方式來鍍製鎳磷凸塊底層金屬,探討其成為電子購裝產業裡凸塊底層金屬之可行性。實驗設計中改變不同的磷含量(7wt%, 10wt%, 13wt%)並與不同的市售錫膏探討其溼潤性質(wettability)。藉由掃瞄式電子顯微鏡及原子力顯微鏡來研究其表面形態及表面粗糙度對溼潤性的影響,並找出溼潤性與磷含量之關係。此外也將研究在電鍍過程中添加界面活性濟(surfactant)對電鍍鎳磷之表面形態、粗糙度及溼潤性的影響。
    不同的磷含量對於錫銀銅無鉛銲錫與鎳磷凸塊底層金屬之介面反應有很大的影響。在一次迴銲後,(Cu,Ni)6Sn5先生成在銲錫與凸塊底層介面。經過三次迴銲之後,由於(Ni,Cu)3Sn4的生成,(Cu,Ni)6Sn5會脫離介面至銲錫裡。隨著迴銲次數的增加,Ni-Sn-P生成在10wt%與13wt%磷含量的凸塊底層接點,而在7wt%磷含量的凸塊底層則幾乎觀測不到Ni-Sn-P的生成,即使在十次迴銲後亦未發現Ni-Sn-P。考量凸塊底層之溼潤性、鍍覆速率、與銲錫之介面反應、凸塊底層之消粍速率及機械性質的研究,以提出並討論鎳磷凸塊底層金屬之最佳磷含量及適合的厚度。
    由於Ni-Sn-P的生成對於銲接點之可靠度會有負面的影響,藉由穿透式電子顯微鏡的觀察發現一般認為的富磷層(P-rich layer)會隨著不同的磷含量有所變化。在7wt%磷含量會生成Ni3P的富磷層,而13wt%磷含量則是以Ni12P5之富磷相為主。此一差異對於Ni-Sn-P相的生成有著極大的影響,藉由控制鎳磷凸塊底層金屬之磷含量可以抑制此Ni-Sn-P相的生成於鎳磷凸塊底層金屬之銲接點上。此外,在多次的迴銲處理後,Ni-Sn-P底下之富磷相會有一系列的變化,而且不同的磷含量之凸塊底層金屬,其變化也不盡相同。搭配穿透式電子顯微鏡、電子微探儀及相圖,可詳細地探討在錫銀銅無鉛銲錫與鎳磷凸塊底層金屬之接點的富磷相之演進。
    此外,亦進而即時觀察錫/銅銲點材料系統介面反應之相生成的行為。利用國家同步輻射研究中心之穿透式X光(in-situ X-ray with transmission mode in NSRRC),得到一張介面反與之XRD圖只需要一分鐘。這是非常適合用來即時觀察介面反應生成之方法,而且即使是在迴銲過程中亦可以使用。除此之外,介金屬化合物(IMC)之熱膨脹係數(CTE)也可以藉由此方法得到。


    Contents List of Tables........................................................................................... III Figures Caption...................................................................................... V Abstract................................................................................................... XIII Chapter I Introduction.......................................................................... 1 1.1 Background................................................................................. 1 1.2 Motivations and Goals in This Study.......................................... 2 Chapter II Literature Review............................................................... 8 2.1 Electronic Package...................................................................... 8 2.2 Flip Chip Technology.................................................................. 9 2.3 Solder Bump................................................................................ 10 2.3.1 Solder Materials................................................................ 10 2.3.2 SnPb Solder....................................................................... 11 2.3.3 Lead-Free Solder............................................................... 12 2.4 Under Bump Metallization.......................................................... 14 2.4.1 Cu-Based UBM................................................................. 14 2.4.2 Ni-Based UBM.................................................................. 15 2.4.2.1 Electroplated Ni....................................................... 15 2.4.2.2 Electroless Ni-P....................................................... 15 2.4.2.3 Sputtered Ni(V)....................................................... 16 2.5 Metallurgical Reactions in Solder Joints..................................... 16 2.5.1 Metallurgical Reactions between Solders and Cu-Based UBM................................................................................. 17 2.5.2 Metallurgical Reactions between Solders and Ni-Based UBM................................................................................. 17 2.6 In-Situ Observation of Solder Joint Reactions………………… 21 Chapter III Experimental Procedure................................................... 55 3.1 Fabrication of Joints and Heat Treatment................................... 55 3.1.1 Electroplated process & Sn3.0Ag0.5Cu/Ni-P solder joint 55 3.1.2 UBM patterning & Bumping process for ball shear mechanical test…………………………………………... 56 3.2 Sample Preparation for characterization………………………. 57 3.3 Characterization and Analysis..................................................... 57 3.3.1 Wettability test................................................................... 57 3.3.2 Surface morphology and surface roughness…………….. 58 3.3.3 Crystallinity identification………………………………. 58 3.3.4 Microstructure evolution……………………………….. 58 3.3.5 Composition analysis……………………………..…….. 59 3.3.6 Structure evolution………………………………..…….. 59 3.3.7 Ball shear test……………………………………..…….. 59 3.4 In-situ Observation of Sn/Cu joint.............................................. 60 Chapter IV Results and Discussion...................................................... 70 4.1 Investigation of the feasibility for electroplated Ni-P as an under bump metallization……………………………………… 70 4.2 Optimal phosphorous content selection of Ni-P UBM with SnAgCu solder………………………………………………… 106 4.3 Formation mechanism of Ni-Sn-P phase and the phase evolution of P-rich phases in the SnAgCu/Ni-P solder joint…... 128 4.4 In-situ observation of the interfacial reaction in the solder joint system by synchrotron radiation……………………..………... 166 Chapter V Conclusions.......................................................................... 173 References............................................................................................... 175 個人簡歷……………………………………………………………….. 190 自傳.......................................................................................................... 191 Publication Lists………………………………………………………. 193 International Conference Presentation……………………………… 195

    References
    1. L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
    2. J.H. Lau, Flip Chip Technologies, McGraw-Hill, New York, 1996, pp. 26-30.
    3. G.R. Blackwell, The Electronic Packaging Handbook, Boca Raton, Florida: CRC Press, 2000, pp. 4.4-4.25.
    4. M.E. Loomans, S. Vaynman, G. Ghosh and M.E. Fine, “Investigation of multi-component lead-free solders”, J. Electron. Mater. 23 (1994) 741.
    5. A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774.
    6. H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
    7. S.K. Kang, R.S. Rai and S. Purrshothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders” J. Electron. Mater., 25 (1996) 1113.
    8. J.W. Nah and K.W. Paik, “Investigation of flip chip under bump metallization systems of Cu pads” IEEE Trans. Compon. Packag. Technol. 25 (2002) 32.
    9. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin and C.R. Kao, “Formation and resettlement of (AuxNi1-x)Sn4 in solder joints of ball-grid-array packages with the Au/Ni surface finish”, J. Electron. Mater. 29 (2000) 1175.
    10. C.E. Ho, L.C. Shiau and C.R. Kao, “Inhibiting the formation of (Au1-xNix)Sn4 and reducing the consumption of Ni metallization in solder joints”, J. Electron. Mater. 31 (2002) 1264.
    11. K.L. Lin and Y.C. Liu, “Reflow and property of Al/Cu/electroless Nickel/Sn-Pb solder bumps”, IEEE Trans. on Adv. Packag. 22 (1999) 575.
    12. J.Y. Park, C.W. Yang, J.S. Ha, C.U. Kim, E.J. Kwon, S.B. Jung and C.S. Kang, “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization”, J. Electron. Mater. 30 (2001) 1165.
    13. J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology”, J. Appl. Phys. 85 (1999) 8456.
    14. B.L. Young and J.G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing”, J. Electron. Mater. 30 (2001) 878.
    15. C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear and P. Elenius, “Electron microscopy of interfacial reaction between eutectic SnPb and Al/Ni(V)/Cu thin film metallization”, J. Appl. Phys. 87 (2000) 750.
    16. M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater, Res. 17 (2002) 1612.
    17. K.S. Bae and S.J. Kim, “Microstructure and adhesion properties of Sn-0.7Cu/Cu solder joints”, J. Mater. Res. 17 (2002) 743.
    18. H.W. Miao and J.G. Duh, “Microstructure evolution in Sn-Bi and Sn-Bi-Cu solder joints under thermal aging”, Mater. Chem. Phys. 71 (2001) 255.
    19. D.R. Frear, J.W. Jang, J.K. Lin and C. Zang, “Pb-free solders for flip-chip interconnects”, JOM, 53 (2001) 28
    20. M. McCormack, S. Jin, G.W. Kammlott and H.S .Chen, “New Pb-free solder alloy with superior mechanical-properties”, Appl. Phys. Lett. 63 (1993) 15.
    21. K. Suganuma, “Advances in lead-free electronics soldering”, Current Opinion Solid State Mater. Sci., 5 (2001) 55.
    22. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys”, Mater. Sci. Eng., A 333 (2002) 106.
    23. C. S. Chang, A. Oscilowski and R. C. Bracken, “Future challenges in electronics packaging”, IEEE Circuits Devices Mag., 14 (1998) 45.
    24. A. Brenner, Electrodeposition of Alloys: Principles and Practice, Academic Press, New York, 1963, Volume II, p. 457.
    25. B. C. Tripathy, S. C. Das, G. T. Hefter, and P. Singh, “Zinc electrowinning from acidic sulfate solutions .1. Effects of sodium lauryl sulfate”, J. Appl. Electrochem. 27 (1997) 673.
    26. D. Wheeler, T. P. Moffat, G. B. McFadden, S. Coriell, and D. Josell, “Influence of a catalytic surfactant on roughness evolution during film growth”, J. Electrochem. Soc. 151 (2004) C538.
    27. G. B. McFadden, S. R. Coriell, T. P. Moffat, D. Josell, D. Wheeler, W. Schwarzacher, and J. Mallett, “A mechanism for brightening - Linear stability analysis of the curvature-enhanced coverage model”, J. Electrochem. Soc. 150 (2003) C591.
    28. J.L. Fang, “Bondability & solderability of neutral electroless gold”, Plat. Surf. Finish. 88 (2001) 44.
    29. P. Snugovsky, P. Arrowsmith, M. Romansky, “Electroless Ni/immersion Au interconnects: Investigation of Black Pad in wire bonds and solder joints”, J. Electron. Mater. 30 (2001) 1262.
    30. K.J. Zeng, R. Stierman, T. C. Chiu, and D. Edwards, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97, 024508 (2005)
    31. T.T. Mattila, J.K. Kivilahti, “Failure mechanisms of lead-free chip scale package interconnections under fast mechanical loading”, J. Electron. Mater. 34 (2005) 969.
    32. N. Shaigan, S.N. Ashrafizadeh, M.S.H. Bafghi, S. Rastegari, “Elimination of the corrosion of Ni-P substrates during electroless gold plating”, J. Electrochem. Soc. 152 (2005) C173.
    33. K. Sugiura, “Advanced analysis technology supporting SiP”, Jeol News. 40 (2005) 24.
    34. K.J. Zeng, R. Stierman, D. Abbott, and M. Murtuza, “The root cause of black pad failure of solder joints with electroless Ni/immersion gold plating”, JOM. 58 (2006) 75.
    35. Y.D. Jeon, Y.B. Lee and Y.S. Choi, “Thin Electroless Cu/OSP on Electroless Ni as a Novel Surface Finish for Flip Chip Solder Joints”, Electronic Components and Technology Conference. 2006 Proceedings, p.119.
    36. N. Biunno, “A Root Cause Failure Mechanism for Solder Joint Integrity of Electroless Nickel/Immersion Gold Surface Finishes”, a report from HADCO Santa Clara, Inc.
    37. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park, and J.S. Yoo, “Origin of Surface Defects in PCB Final Finishes by the Electroless Nickel Immersion Gold Process”, J. Electron. Mater. 37 (2008) 527.
    38. J.W. Jang, D.R. Frear, T.Y. Lee, and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization”, J. Appl. Phys. 88 (2000) 6359.
    39. Y.C. Sohn, J. Yu, S.K. Kang, D.Y. Shih, and T.Y. Lee, “Spalling of intermetallic compounds during the reaction between lead-free solders and electroless Ni-P metallization”, J. Mater. Res. 19 (2004) 2428.
    40. S.W. Kim, J.W. Yoon, and S.B. Jung, “Interfacial reactions and shear strengths between Sn-Ag-based Pb-free solder balls and Au/EN/Cu metallization”, J. Electron. Mater. 33 (2004) 1182.
    41. J.W. Yoon, and S.B. Jung, “Interfacial reactions between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer during reflow reaction”, J. Alloy. Compd. 396 (2005) 122.
    42. J.M. Koo and S.B. Jung, “Effect of substrate metallization on mechanical properties of Sn-3.5Ag BGA solder joints with multiple reflows”, Microelectron. Eng. 82 (2005) 569.
    43. Y.C. Lin and J.G. Duh, “Phase transformation of the phosphorus-rich layer in SnAgCu/Ni-P solder joints”, Scripta Mater. 54 (2006) 1661.
    44. Y.C. Lin, T.Y. Shih. S.K. Tien and J.G. Duh, “Suppressing Ni-Sn-P growth in SnAgCu/Ni-P solder joints”, Scripta Mater. 56 (2007) 49.
    45. Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, “In situ observation of the void formation-and-propagation mechanism in solder joints under current-stressing”, Acta Mater., 53 (2005) 2029.
    46. C.M. Tsai, Y.S. Lai, Y.L. Lin, C.W. Chang, and C.R. Kao, “In-situ observation of material migration in flip-chip solder joints under current stressing”, J. Electron. Mater., 35 (2006) 1781.
    47. M.O. Alam, B.Y. Wu, Y.C. Chan, K.N. Tu, “High electric current density-induced interfacial reactions in micro ball grid array (mu BGA) solder joints”, Acta Mater., 54 (2006) 613.
    48. Albert T. Wu, K.N. Tu, J.R. Lloyd, N. Tamura, B.C. Valek, and C.R. Kao, “Electromigration-induced microstructure evolution in tin studied by synchrotron x-ray microdiffraction”, Appl. Phys. Lett, 85 (2004) 2490.
    49. J.Y. Song, J. Yu, and T.Y. Lee, “Analysis of phase transformation kinetics by intrinsic stress evolutions during the isothermal aging of amorphous Ni(P) and Sn/Ni(P) films”, J. Mater. Res., 19 (2004) 1257.
    50. J.Y. Song, “Layered intermetallic compounds and stress evolution in Sn and Ni(P) films”, J. Mater. Res., 22 (2007) 2025.
    51. C.N. Liao, and C.T. Wei, “Effect of intermetallic compound formation on electrical properties of Cu/Sn interface during thermal treatment”, J. Electron. Mater., 33 (2004) 1137.
    52. C.N. Liao, and C.T. Wei, “An isochronal kinetic study of intermetallic compound growth in Sn/Cu thin film couples”, Thin Solid Films, 515 (2006) 2781.
    53. R.R. Tummala and E. J. Rymaszewski, Microelectronics packaging handbook, 2nd edition, Van Nostrand Reihold, New York, 1997.
    54. J.H. Lau, Ball grid array technology, McGraw-Hill, New York, 1995.
    55. P.A. Totta, R. P. Sopher, “SLT device metallurgy and its monolithic extensions” IBM J. Res. Develop. 13 (1969) 226.
    56. J.H. Lau and S.W.R. Lee, Chip scale package, CSP: Design, Materials, Process and Applications, McGraw-Hill, New York, 1999.
    57. K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology”, Mater. Sci. Eng. R 34 (2001) 1.
    58. C.A. Harper, Electronic packaging and interconnection handbook, 3rd edition, McGraw-Hill, New York, 2000.
    59. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder”, JOM 45 (1993) 25.
    60. R.E. Reed-Hill and R. Abbaschian, Physical metallurgy principles, PWS, Boston, 1994.
    61. W.R. Lewis, Notes on soldering, Tin Research Institute, 66, 1961.
    62. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27 (2000) 95.
    63. K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. Eng. R 38 (2002) 55.
    64. S. Topani, S. Gopakumar, P. Borgesen and K. Srihari, “Reliability of lead-free solder interconnections-A review”, 2002 annual reliability and maintainability symposium, Piscataway, NJ: IEEE, 2002, pp.423.
    65. J.S. Hwang, Modern solder technology for competitive electronics manufacturing, McGraw-Hill, New York, 1996.
    66. K. Suganuma, Environmentally Conscious Design and Inverse Manufacturing, Piscataway, NJ: IEEE, 1999, p. 620.
    67. Y. Kariya, Y. Hirata and M. Otsuka, “Effect of thermal cycles on the mechanical strength of quad flat pack leads/Sn-3.5Ag-X (X = Bi and Cu) solder joints”, J. Electron. Mater. 28 (1999) 1263.
    68. M.E. Loomans and M.E. Fine, “Tin-silver-copper eutectic temperature and composition”, Metal. Mat. Trans. A 31 (2000) 1155.
    69. R.G. Werner, D.R. Frear, J. DeRosa and E. Sorongon, “Flip chip packaging” 1999 Int. Symp. on Advanced Packaging Materials (Braselton, GA, USA, 1999), pp. 246-251.
    70. F.A. Lowenheim, Modern electroplating, 2nd edition, Wiley, New York, 1974.
    71. P. Nash, Phase diagrams of binary nickel alloys, ASM International, 1991, p.235.
    72. R.C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content”, Z. Metallkd. 79 (1988) 472.
    73. J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan (2000).
    74. S.V.S. Tyagi, V.K. Tondon, and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
    75. K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
    76. T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1990, pp. 1481-1483.
    77. G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Microstructures of phased-in Cr–Cu/Cu/Au bump-limiting metallization and its soldering behavior with high Pb content and eutectic PbSn solders”, Appl. Phys. Lett. 71 (1997) 2946.
    78. P.G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, “Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils”, J. Appl. Phys. 86 (1999) 6746.
    79. G. Ghosh, “Kinetics of interfacial reaction between eutectic SnPb solder and Cu/Ni/Pd metallizations”, J. Electron. Mater. 28 (1999) 1238.
    80. W.G. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu, and Ni in a molten tin-lead solder”, Weld. J. Res. Suppl. 28 (1969) 551s.
    81. C.Y. Lee and K.L. Lin, “Preparation of solder bumps incorporating electroless nickel-boron deposit and investigation on the interfacial interaction behavior and wetting kinetics”, J. Mater. Sci.: Mater. Electron. 8 (1997) 377.
    82. K.C. Huang, Y.C. Chan, C.W. Tang and H.C. Ong, “Correlation between Ni3Sn4 intermetallics and Ni3P due to solder reaction-assisted crystallization of electroless Ni-P metallization in advanced packages”, J. Mater. Res. 15 (2000) 2534.
    83. K.C. Huang and Y.C. Chan, “Study of Ni3P growth due to solder reaction-assisted crystallization of electroless Ni-P metallization”, J. Mater. Sci. Lett. 19 (2000) 1755.
    84. P. Liu, Z. Xu, J.K. Shang, “Thermal stability of electroless-Ni/solder interfaces”, Metall. Mater. Trans. A 31 (2000) 2857.
    85. C.S. Huang, J.H. Yeh, B.L. Young and J.G. Duh, “Phenomena of electroless Ni-P (EN) and intermetallic compound stripping and dissolving in Sn-Bi and Sn-Pb solder joints with Au/EN/Cu metallization”, J. Electron. Mater. 31 (2002) 1230.
    86. S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G. Advocate, M. Griffin, C. Goldsmith, D.W. Henderson, T. Gosselin and D. King, J. Konrad, A. Sarkhel and K.J. Puttlitz, “Interfacial reaction studies on lead (Pb)-free solder alloys”, Electronic Components and Technology Conference, 2001, pp.448-454.
    87. J.W. Jang, D.R. Frear, T.Y. Lee and K.N. Tu, “Morphology of interfacial reaction between lead-free solders and electroless Ni-P under bump metallization”, J. Appl. Phys. 88 (2000) 6359.
    88. S. Ahat, L. Du, M. Sheng, L. Luo, W. Kempe and J. Freytag, “Effect of aging on the microstructure and shear strength of SnPbAg/Ni-P/Cu and SnAg/Ni-P/Cu solder joints”, J. Electron. Mater. 29 (2000) 1105.
    89. T.B. Massalski; H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM Int., Materials Park, Ohio, 1990, p. 96.
    90. C.W. Hwang, K. Suganuma, M. Kiso and S. Hashimoto, “Interface microstructures between Ni–P alloy plating and Sn–Ag–(Cu) lead-free solders”, J. Mater. Res. 18 (2003) 2540.
    91. Y.C. Sohn and J. Yu, “Correlation between chemical reaction and brittle fracture found in electroless Ni(P)/immersion gold–solder interconnection” J. Mater. Res. 20 (2005) 1931.
    92. J.W. Yoon, and S.B. Jung, “Effect of isothermal aging on the interfacial reactions between Sn–0.4Cu solder and Cu substrate with or without ENIG plating layer”, Surf. Coat. Tech., 200 (2006) 4440.
    93. A. Kumar, Z. Chen, S.G. Mhaisalkar, C.C. Wong, P.S. Teo, and V. Kripesh, “Effect of Ni–P thickness on solid-state interfacial reactions between Sn–3.5Ag solder and electroless Ni–P metallization on Cu substrate”, Thin Solid Films, 504 (2006) 410.
    94. V. Vuorinen, T. Laurila, H. Yu, and J. K. Kivilahti, “Phase formation between lead-free Sn–Ag–Cu solder and Ni(P)/Au finishes”, J. Appl. Phys. 99 (2006) 023530.
    95. H. Matsuki, H. Ibuka, Hiroyasu Saka, “TEM observation of interfaces in a solder joint in a semiconductor device”, Sci. Tech. Adv. Mater., 3 (2002) 261.
    96. G.J. Jackson, H. Lu, R. Durairaj, N. Hoo, C. Bailey, N.N. Ekere, and J. Wright, “Intermetallic Phase Detection in Lead-Free Solders Using Synchrotron X-Ray Diffraction”, J. Electron. Mater. 33 (2004) 1524.
    97. W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments”, J. Mater. Res. 7, 1564 (1992).
    98. J.W. Lee, “Microstructures analysis, mechanical properties and corrosion resistance evaluation in chromium containing surface modification layers on ferrous alloys”, Dissertation, National Tsing Hua University, Hsinchu, Taiwan (2003).
    99. E.P. Wood and K.L. Nimmo, “In search of lead-free electronic solders”, J. Electron. Mater. 23 (1994) 709.
    100. F. Hua and J. Glazer, “Lead-free solders for electronic assembly, design and reliability of solders and solder interconnections”, Mine. Metal. Mat. Socieity, 65 (1997).
    101. J.I. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J.R. Michael, Scanning Electron Microscopy and X-ray Microanalysis, Plenum, New York, 2003, pp. 391-420.
    102. R. L. Zeller III and U. Landau, “ELECTRODEPOSITION OF DUCTILE NI-P AMORPHOUS-ALLOYS USING PERIODIC-REVERSE CURRENT”, J. Electrochem. Soc., 138, 1010 (1991);
    103. R. L. Zeller III and U. Landau, “ELECTRODEPOSITION OF NI-P AMORPHOUS-ALLOYS - OBSERVATIONS SUPPORTING THE INDIRECT MECHANISM OF PHOSPHORUS INCORPORATION”, J. Electrochem. Soc., 139 (1992) 3464.
    104. T. M. Harris and Q. D. Dang, “THE MECHANISM OF PHOSPHORUS INCORPORATION DURING THE ELECTRODEPOSITION OF NICKEL-PHOSPHORUS ALLOYS”, J. Electrochem. Soc., 140 (1993) 81.
    105. T. Morikawa, T. Nakade, M. Yokoi, Y. Fukumoto, and C. Iwakura, “Electrodeposition of Ni-P alloys from Ni-citrate bath”, Electrochim. Acta, 42 (1997) 115.
    106. B. L. Young, J. G. Duh, and B. S. Chiou, “Wettability of electroless Ni in the under bump metallurgy with lead free solder”, J. Electron. Mater. 30 (2001) 543.
    107. P. Peeters, G.v.d. Hoorn, T. Daenen, A. Kurowski, and G. Staikov, “Properties of electroless and electroplated Ni-P and its application in microgalvanics”, Electrochim. Acta, 47 (2001) 161.
    108. Y. Y. Chen, J. G. Duh, and B. S. Chiou, “The effect of substrate surface roughness on the wettability of Sn-Bi solders”, J. Mater. Sci.-Mater. Electron. 11 (2000) 279.
    109. B. D. Cullity and S. R. Stock, “Elements of X-Ray Diffraction”, Prentice Hall, New Jersey, 2001, 3rd Edition.
    110. Web: http://www.yikst.com/Page/YIKSTE.html
    111. S. T. Kao, Y. C. Lin, and J. G. Duh, “Controlling intermetallic compound growth in SnAgCu/Ni-P solder joints by nanosized Cu6Sn5 addition”, J. Electron. Mater. 35 (2006) 486.
    112. Y. C. Lin and J. G. Duh, “Wettability of electroplated Ni-P in under bump metallurgy with Sn-Ag-Cu solder”, J. Electron. Mater. 35 (2006) 7.
    113. M. Alajoki, L. Nguyen and J. Kivilahti, “Drop Test Reliability of Wafer Level Chip Scale Packages”, Electronic Components and Technology Conference. 2005 Proceedings, p.637.
    114. J. Yu, “Reactions between Electroless Ni(P) and Sn-3.5Ag and its effect on the mechanical reliability”, Lead-free Workshop, TMS 2005 Annual Meeting.
    115. http://www.boulder.nist.gov/div853/lead%20free/props01.html
    116. JCPDS-ICDD 2003, 74-1384 (1997), 17-0225 (1964), 74-1381 (1997).
    117. Y.C. Lin and J.G. Duh. “Phase transformation of the phosphorus-rich layer in SnAgCu/Ni-P solder joints”, Scripta Materialia. 54 (2006) 1661.
    118. K.H. Hur, J.H. Jeong and D.N. Lee, “MICROSTRUCTURES AND CRYSTALLIZATION OF ELECTROLESS NI-P DEPOSITS”, J. Mater. Sci. 25 (1990) 2573.
    119. M.H. Staia, E.S. Puchi, G. Gastro, F.O. Ramirez and D.B. Lewis, “Effect of thermal history on the microhardness of electroless Ni-P”, Thin Solid Film. 355-356 (1999) 472.
    120. D. Tachev, J. Georgieva and S. Armyanov, “Magnetothermal study of nanocrystalline particle formation in amorphous electroless Ni-P and Ni-Me-P alloys”, Electrochim. Acta. 47 (2001) 359.
    121. E.M. Ma, S.F. Luo and P.X. Li, “A TRANSMISSION ELECTRON-MICROSCOPY STUDY ON THE CRYSTALLIZATION OF AMORPHOUS NI-P ELECTROLESS DEPOSITED COATIN”, Thin Solid Film. 166 (1988) 273.
    122. H.S. Yu, S.F. Luo and Y.R. Wang, “A comparative study on the crystallization behavior of electroless Ni-P and Ni-Cu-P deposits”, Surf. Coat. Technol. 148 (2001) 143.
    123. J.Q. Gao, Y.T. Wu, L. Lei, S. Bin and W.B. Hu, “Crystallization temperature of amorphous electroless nickel-phosphorus alloys”, materials letters. 59 (2005) 1665.
    124. N. Jiang, J.A. Clum, R.R. Chromik, and E.J. Cotts, “Thermal expansion of several Sn-based intermetallic compounds”, Scripta Mater., 37 (1997) 1851.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE