簡易檢索 / 詳目顯示

研究生: 王君華
Wang, Chun Hua
論文名稱: 適用於穿戴式應用之可調式整合生理訊號感測系統設計與實作
Design and Implementation of Low-Energy Configurable Integrated Physiological Sensing System for Wearable Applications
指導教授: 馬席彬
Ma, Hsi Pin
口試委員: 楊家驤
黃元豪
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 穿戴式生理訊號低功耗感測系統系統整合
外文關鍵詞: wearable, physiological signals, low power, sensing system, system integration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,穿戴式感測裝置為一市場趨勢,由mHealth系統發展的裝置是使用感測器蒐集生理訊號並且利用移動式通訊系統達到醫護方面的應用。而穿戴式的設計讓整個系統在無論何時、何地都可以方便地使用。
    低功率消耗是此類系統的一個關鍵議題。因此本篇論文提出了一個應用於穿戴式感測裝置的低功耗且可調式系統設計,並且此系統整合了四種感測器:心電訊號(Electrocardiography,ECG)、腦電訊號(Electroencephalography,EEG)、肌電訊號(Electromyography,EMG)以及用於動作追蹤(motion tracking)的九軸感測器。此系統是以微控制器為主要架構並且利用藍牙低功耗(Bluetooth Low Energy,BLE)的技術來達到無線傳輸。
    透過序列周邊介面(serial-peripheral-interface,SPI),微處理器可以存取經由類比數位轉換器(analog-to-digital converters,ADCs)所取樣到的生理訊號,並且利用建置於微處理器的藍牙協議(Bluetooth stack)控制一藍牙控制器(Bluetooth controller),將取樣到的生理訊號無線傳輸至智慧型手機。我們開發了一個智慧型手機軟體可以同步處理接收到的生理訊號並且顯示、儲存在手機上。
    我們設計的穿戴式系統運作時的耗能為27.69毫瓦,而手機端的軟體程式在背景接收資料時,僅佔用了5%的CPU資源。


    Wearable sensing device is popular in recent years. It's a development of the mHealth system. The mHealth system is based on the mobile communication systems for collecting physiology signals. As a wearable design, it can be portable at anywhere and anytime.
    Low-energy consumption is a critical issue for such system. In this thesis, a low-energy configurable physiological sensing system for wearable application is proposed. We have also integrated four types of sensors in our system including measuring Electrocardiography (ECG), Electroencephalography (EEG), Electromyography (EMG) and a nine-axis sensor for motion tracking. The system is microcontroller-based (MCU-based) and features Bluetooth Low Energy technology for wireless transmission. The physiological signals are sampled by analog-to-digital converters (ADCs) in a specified sampling rate and accessed by MCU via serial-peripheral-interface (SPI). A Bluetooth stack by BlueKitchen is built in MCU and used to control a Bluetooth controller for sending the sampled data to a smartphone wirelessly. We've developed an application on the smartphone to display and store the data in real-time.
    The wearable sensory node is only cost 27.69 mW as the power consumption. And the smartphone application uses only 5$\%$ CPU resource when receiving data in the background process.

    Abstract i 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Characteristics of Physiological Signals and Wireless Transmission Interface 5 2.1 Introduction to the Physiological Signals . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Electrocardiography (ECG) [1] . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Electroencephalography (EEG) . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Electromyography (EMG) . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.4 Motion Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.5 Digitized Physiological Signals . . . . . . . . . . . . . . . . . . . . 13 2.2 Wireless Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Bluetooth Low Energy (BLE) . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Proposed Configurable Integrated Physiological Sensing System 21 3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Sensory Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 EEG and EMG Front-End Circuits . . . . . . . . . . . . . . . . . . . 24 3.2.3 ADS1292R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.4 MPU-9250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.5 Four-Wire Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . 34 3.3 Control End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Embedded System Platform . . . . . . . . . . . . . . . . . . . . . . 38 3.3.2 Firmware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 The Smartphone APP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.2 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4.3 Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 Implementation Results 47 4.1 Experimental Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Power Consumption of Sensory Node . . . . . . . . . . . . . . . . . . . . . 47 4.3 CPU Usage of the smartphone APP . . . . . . . . . . . . . . . . . . . . . . 48 4.4 SPI Implementation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Analysis of Received Physiology Signals . . . . . . . . . . . . . . . . . . . 50 4.5.1 ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.2 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5.3 EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.4 Nine-Axis Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.6 Implementation of Sensory Node: the Mini ECG . . . . . . . . . . . . . . . 55 4.6.1 Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5 Conclusions and Future Works 59 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    [1] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press, 1995.
    [2] Sagawa, “Quick Thoughts: For Payments, Bluetooth Puts a Beat Down on NFC and WiFi,” Sep. 2013. [Online]. Available: http://www.sector-sovereign.com/2013/09/quick-thoughts-for-payments-bluetooth-puts-a-beat-down-on-nfc-and-wifi/.
    [3] C. J. D. Luca, A. Adam, R. Wotiz, L. D. Gilmore, and S. H. Nawab, “Decomposition of Surface EMG Signals,” J Neurophysiol, vol. 96, no. 3, pp. 1646–1657, Sep. 2006.
    [4] P. Prendergast and B. Kropf, “How to Use Programmable Analog to Measure MEMS Gyroscopes,” Jan. 2007. [Online]. Available: http://www.eetimes.com/document.asp?doc id=1274559.
    [5] “Lorentz force,” Jul. 2015, page Version ID: 671382070. [Online]. Available:https://en.wikipedia.org/w/index.php?title=Lorentz force&oldid=671382070.
    [6] W. Storr, “Hall Effect Sensor and How Magnets Make It Works.” [Online]. Available:http://www.electronics-tutorials.ws/electromagnetism/hall-effect.html.
    [7] “Bluetooth Core Version 4.2,” Bluetooth SIG, Specification, Jul. 2015.
    [8] “16-Bit, 1 MSPS PulSAR ADC in MSOP/LFCSP,” Analog Devices, Datasheet AD7980, Sep. 2014, rev. D. [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/AD7980.pdf.
    [9] “Low-Power, 2-Channel, 24-Bit Analog Front-End for Biopotential Measurements,”Texas Instruments, Datasheet ADS1291, ADS1292, ADS1292R, Sep. 2012, rev. B. [Online]. Available: http://www.ti.com/lit/gpn/ads1292r.
    [10] A. K. Gupta, “Respiration Rate Measurement Based on Impedance Pneumography,”Texas Instruments, Application Report, Feb. 2011.
    [11] “MPU-9250 Product Specification,” InvenSense, Datasheet, Jan. 2014, rev. 1.0. [Online]. Available: http://store.invensense.com/datasheets/invensense/MPU9250REV1.0.pdf.
    [12] “Serial Peripheral Interface Bus,” Jul. 2015, page Version ID: 673749307. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Serial Peripheral Interface Bus&oldid=673749307.
    [13] M. Ringwald and M. Ringwald, “BTstack Manual Including Quickstart Guide,” BlueKitchen, Manual, Apr. 2015.
    [14] N. Shiozawa, S. Arai, S. Okada, and M. Makikawa, “Gait analysis of Sit-to-Walk Motion by Using Portable Acceleration Monitor Device for Fall Prevention,” in 2012 IEEEEMBS Int. Conf. Biomedical and Health Informatics (BHI), Jan. 2012, pp. 563–564.
    [15] Z. Cao, R. Zhu, and R.-Y. Que, “A Wireless Portable System with Microsensors for Monitoring Respiratory Diseases,” IEEE Trans. Biomed. Eng., vol. 59, no. 11, pp. 3110–3116, Nov. 2012.
    [16] J. Fontana, M. Farooq, and E. Sazonov, “Automatic Ingestion Monitor: A Novel Wearable Device for Monitoring of Ingestive Behavior,” IEEE Trans. Biomed. Eng., vol. 61, no. 6, pp. 1772–1779, Jun. 2014.
    [17] S. Sudin, F. Aziz, N. Mohd Hishamuddin, F. Ahmad Saad, A. Md Shakaff, A. Zakaria, and A. Salleh, “Wearable Heart Rate Monitor Using Photoplethysmography for Motion,” in 2014 IEEE Conf. Biomedical Engineering and Sciences (IECBES), Dec. 2014, pp. 1015–1018.
    [18] F. Mass, M. V. Bussel, A. Serteyn, J. Arends, and J. Penders, “Miniaturized Wireless ECG Monitor for Real-time Detection of Epileptic Seizures,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 4, pp. 102:1–102:21, Jul. 2013.
    [19] Y.Wang, S. Doleschel, R.Wunderlich, and S. Heinen, “AWearableWireless ECG Monitoring System with Dynamic Transmission Power Control for Long-Term Homecare,” J Med Syst, vol. 39, no. 3, pp. 1–10, Feb. 2015.
    [20] G. P. Pizzuti, S. Cifaldi, and G. Nolfe, “Digital Sampling Rate and ECG Analysis,” J. Biomed. Eng., vol. 7, no. 3, pp. 247–250, Jul. 1985.
    [21] E. Niedermeyer and F. H. L. d. Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 2005.
    [22] J. V. Campellone, “EEG: MedlinePlus Medical Encyclopedia,” Feb. 2014. [Online]. Available: http://www.nlm.nih.gov/medlineplus/ency/article/003931.htm.
    [23] G. Robertson, G. Caldwell, J. Hamill, G. Kamen, and S. Whittlesey, Research Methods in Biomechanics, 2E. Human Kinetics, Sep. 2013.
    [24] R. Riener and M. Harders, Virtual Reality in Medicine. Springer Science & Business Media, Apr. 2012.
    [25] D. N. Kumar, Handbook of Neurological Examination, 1st ed. Prentice-Hall of India Pvt.Ltd, Mar. 2011.
    [26] X. Yun and E. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Trans. Robot., vol. 22, no. 6, pp. 1216–1227, Dec. 2006.
    [27] R. Zhu and Z. Zhou, “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 12, no. 2, pp. 295–302, Jun. 2004.
    [28] “Accelerometer,” Jul. 2015, page Version ID: 671645806. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Accelerometer&oldid=671645806.
    [29] R. O’Reilly, K. Harney, and A. Khenkin, “Sonic Nirvana: MEMS Accelerometers as Acoustic Pickups in Musical Instruments,” Jun. 2009. [Online]. Available: http://www.sensorsmag.com/sensors/acceleration-vibration/sonic-nirvana-mems-accelerometers-acoustic-pickups-musical-i-5852.
    [30] R. B. Berry, “Chapter 2 - The Technology of Sleep Monitoring: Differential Amplifiers, Digital Polysomnography, and Filters,” in Fundamentals of Sleep Medicine, R. B. Berry, Ed. Saint Louis: W.B. Saunders, 2012, pp. 13–26. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9781437703269000026.
    [31] R. Merletti and P. Di Torino, “Standards for Reporting EMG Data,” J Electromyogr Kinesiol, vol. 9, no. 1, pp. 3–4, 1999.
    [32] A. Sabatini, “Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing,” IEEE Trans. Biomed. Eng., vol. 53, no. 7, pp. 1346–1356, Jul. 2006.
    [33] A. Smith, “U.S. Smartphone Use in 2015,” Apr. 2015. [Online]. Available:http://www.pewinternet.org/2015/04/01/us-smartphone-use-in-2015/.
    [34] “Mixed-Signal Microcontrollers,” Texas Instruments, Datasheet MSP430F5438A, MSP430F5437A, MSP430F5436A, MSP430F5435A MSP430F5419A, MSP430F5418A, Aug. 2013, rev. E. [Online]. Available: http://www.ti.com/lit/gpn/msp430f5438a.
    [35] “Bluetooth and Dual-Mode Controller,” Texas Instruments, Datasheet CC256x, Jan.2014, rev. D. [Online]. Available: http://www.ti.com/lit/gpn/cc2564.
    [36] J.-W. Jhuang, “A Patch-sized Wearable ECG/Respiration Recording Platform with DSP

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE