簡易檢索 / 詳目顯示

研究生: 王尹
Wang, Yin
論文名稱: Microstructure Control in Self-lubricating CrAlN/VN Multilayer Coatings for Improved Mechanical Response and High-temperature Tribological Characteristics
藉結構調制具自潤滑之氮化鉻鋁/氮化釩奈米多層薄膜以強化機械性質及抗高溫磨耗特徵
指導教授: 杜正恭
Duh, Jenq Gong
口試委員: 李志偉
Lee, Jyh Wei
吳芳賓
Wu, Fan Bean
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 108
中文關鍵詞: 氮化鉻鋁/氮化釩奈米多層薄膜高溫磨耗試驗抗磨耗機制
外文關鍵詞: CrAlN/VN multilayer coatings, High-temperature tribological test, Anti-wear mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面改質工程係一項提升工件表面之機械性質、抗氧化、耐腐蝕與抗磨耗行為的新穎科技,在工業界中扮演著不可或缺的角色。然而,一些不可避免的問題仍限制表面改質技術於硬質塗層領域的發展,如在切削過程中,切削刀具表面會與工件表面產生極高之摩擦力,引起熱退化以及黏著反應等。為了克服這些缺陷,本研究嘗試開發一嶄新且具有卓越高溫抗磨耗性之自潤滑硬質薄膜系統。
    本研究中,乃利用磁控濺鍍之方式製備出一新穎的氮化鉻鋁/氮化釩奈米多層薄膜,週期厚度控制在10至40奈米之間,而每一週期中,氮化鉻鋁與氮化釩之厚度相等。藉由穿透式電子顯微鏡之高解析模式、暗場影像,可驗證多層薄膜形成緊密之柱狀晶結構。由於大量介面引入之結構強化效應,使得此多層薄膜在適當週期厚度下,可展現出極為優異之抗塑性變型特性。當週期厚度控制於16奈米時,薄膜之最高抗塑性變型值可高達0.36。
    此外,本研究分別於室溫及攝氏700度高溫下,利用ball-on-disc磨耗測試來檢驗薄膜之抗磨耗表現。室溫磨耗測試結果顯示,多層薄膜由於介面強化效果,其磨耗率均較單層之氮化鉻鋁低,而週期厚度為16奈米之多層薄膜具1.0×10−6 mm3N-1m-1之最低磨耗率。另一方面,在攝氏700度下,由於大量具有固態及液態潤滑效果的氧化釩於磨耗表面生成,氮化鉻鋁/氮化釩多層薄膜之摩擦係數更可大幅下降,而多層薄膜之磨耗率也因介面強化效應而明顯降低,當週期厚度控制為16奈米時,具最低之磨耗率1.6×10−5 mm3N-1m-1。研究中更可發現,經過攝氏700度之磨耗測試後,相較於單層氮化鉻鋁薄膜,氮化鉻鋁/氮化釩之多層薄膜較不易破裂、崩解,且磨道表面上存在較少之磨屑。藉由電子能譜儀、聚焦離子束及穿透式電子顯微鏡分析,更可進一步整合在不同溫度的條件下,此自潤滑薄膜之抗磨損機制。利用本研究中所提出結構強化及成分貢獻建構出之混成行為,可成功發展出一具抗高溫磨耗之自潤滑薄膜系統。


    The surface modification engineering is a useful technique to achieve desired properties of mechanical strength, thermal stability, anti-corrosion and wear-resistance onto the surface and thus plays an indispensable role in industry, especially in machining process. However, some inevitable problems restrict the continuous development of hard coatings in this field, such as high friction, thermal degradation and strong adhesive interaction at contact surface during the process. To overcome these drawbacks, the development of a novel self-lubricating hard coating with superior anti-abrasion at elevated temperature is compulsory.
    In this study, a new CrAlN/VN multilayer coatings are fabricated by RF reactive magnetron sputtering. The bilayer periods are altered from 10 to 40 nm, and the individual layer thickness ratio of CrAlN to VN is kept at 1. Characterizations by TEM, dark-field images, and SEM reveal dense and coherent columnar in coatings. Owing to the interfacial strengthening with plenty of interfaces, CrAlN/VN multilayer coatings with appropriate bilayer period exhibit superior plastic deformation resistance, H3/E*2. With an appropriate bilayer period of 16 nm, the H3/E*2 boosts to a maximum around 0.36. Furthermore, the tribological properties are examined by a ball-on-disc wear test at room temperature and 700oC. At room temperature, the wear rates of CrAlN/VN multilayer coatings are lower than that of CrAlN due to structural strengthening. Particularly, the multilayer coating with a bilayer period of 16 nm reveals the lowest wear rate of 1.0×10−6 mm3N-1m-1. After wear test at 700 oC, it can be observed that the coefficient of friction (COF) values for CrAlN/VN multilayer coatings significantly reduce with increasing temperature, which is attributed to the formation of sufficient solid and liquid self-lubricating vanadium oxides at elevated temperature. Moreover, mechanical strengthening in multilayer coatings with numbers of interfaces is beneficial for lowering the wear rate. Especially, the value can be down to 1.6×10−5 mm3N-1m-1 for the one with bilayer period of 16 nm. In addition, the worn morphology after wear test at 700oC is much favorable with less spallation and debris on the wear track, as compared to CrAlN monolayer. The X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) and transmission electron microscopy (TEM) techniques are further used to examine the worn surface characteristics after wear test at elevated temperature to further probe the hybrid anti-wear mechanisms. A hybrid mechanism, including structural strengthening and elemental contribution, is proposed to highlight the favorable anti-wear property in CrAlN/VN multilayer coatings at elevated temperature.

    Contents Contents................................................I List of Table.........................................III Figures Caption........................................IV Abstract..............................................VII Chapter 1 Introduction..................................1 1.1 Background..........................................1 1.2 Component and Architecture Control in Multi-functional Coatings.....................................3 1.3 Motivation and Objectives...........................4 Chapter 2 Literature Review.............................6 2.1 Concept of Surface Modification Engineering.........6 2.2 Sputtering Technique................................7 2.2.1 Sputtering........................................7 2.2.2 Magnetron Sputtering..............................8 2.2.3 Radio-frequency Magnetron Sputtering Technique....9 2.3 Review of Nitride Based Hard Coatings...............9 2.3.1 Binary TiN and CrN Systems.......................10 2.3.2 Ternary TiAlN and CrAlN Systems..................11 2.3.3 Vanadium Nitride Coating.........................13 2.3.4 Multilayer Coatings..............................14 2.3.4.1 Strengthening Mechanism in Multilayer Coatings.15 2.3.4.1.1 Shear Modulus Difference.....................15 2.3.4.1.2 Coherent Strain Field Strengthening..........16 2.3.4.1.3 Hall-Petch Relationship......................17 2.3.4.1.4 Epitaxial Stabilization Effect...............18 2.4 The Tribological Characteristics of Multilayer Coatings...............................................19 2.5 Properties Evaluation and Characterizations........21 2.5.1 Nanoindentation Method...........................21 2.5.2 Nano-scratch Method..............................23 2.5.3 Transmission Electron Microscopy (TEM)...........23 Chapter 3 Experimental Procedure.......................39 3.1 Sample Preparations................................39 3.1.1 Grinding and Polishing of Substrates.............39 3.1.2 Ultrasonic Cleaning..............................39 3.2 Deposition of CrAlN/VN Multilayer Coatings.........39 3.3 Measurements and Analysis..........................40 3.3.1 Composition Analysis.............................40 3.3.2 Crystallographic Identification..................41 3.3.3 Hardness and Elastic Modulus Evaluation..........41 3.3.4 Evaluation of Adhesion Strength..................41 3.3.5 Evaluation of Wear Resistance at Elevated Temperature............................................42 3.3.6 Worn Surface Characterizations after Wear Test...42 3.3.7 Microstructural Analysis.........................43 Chapter 4 Results and Discussion.......................46 4.1 Chemical Composition, Texture and Microstructure in Multilayer Coatings....................................46 4.2 Hardness, Elastic Modulus and Adhesion Strength Evolution of Multilayer Coatings.......................53 4.3 Tribological Properties at Room Temperature........56 4.4 Tribological Properties at 700oC...................67 Chapter 5 Conclusions..................................78 References.............................................80 Publication Lists......................................92 International Conference Presentations.................93

    1. R. Melley, P. Wissner, “The real costs of lubrication”, 99th AGM-CIM, Canada, 1997.
    2. C.F. Powell, J.H. Oxley, J.M. Blocher, “Vapor Deposition”, 1996, Wiley, New York, USA.
    3. J.D. Kim, Y.H. Kang, “High-speed machining of aluminum using diamond endmills”, Int. J. Mach. Tools Manufact. 37 (1997) 1155.
    4. R. Franz, C. Mitterer, “Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review”, Surf. Coat. Technol. 228 (2013) 1.
    5. R.W. Hertzberg, “Deformation and fracture mechanics of engineering materials”, 3rd ed., Wiley, New York, 1989.
    6. P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, “Microstructural design of hard coatings”, Prog. Mater. Sci. 51 (2006) 1032.
    7. I. Milosev, H.H. Strehblow, B. Navinsek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation”, Thin Solid Films 303 (1997) 246.
    8. L. Hultman, “Thermal stability of nitride thin films”, Vacuum 57 (2000) 1.
    9. S. PalDey, S.C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review”, Mat. Sci. Eng. A-Struct. A342 (2003) 58.
    10. E. Bergmann, H. Kaufmann, R. Schmid, J. Vogel, “Ion-plated titanium carbonitride films”, Surf. Coat. Technol. 42 (1990) 237.
    11. W. Konig, D. Kammermeier, “Performance of TiN-, Ti(C, N)- and (Ti, Al)N- Coated Cutting Tools”, Mater. Sci. Forum 102-104 (1992) 623.
    12. H.A. Jehn, “Multicomponent and multiphase hard coatings for tribological applications”, Surf. Coat. Technol. 131 (2000) 433.
    13. C.H. Lin, J.G. Duh, J.W. Yeh, “Multi-component nitride coatings derived from Ti–Al–Cr–Si–V target in RF magnetron sputter”, Surf. Coat. Technol. 201 (2007) 6304.
    14. H. Lind, R. Forsen, B. Alling, N. Ghafoor, F. Tasnadi, M.P. Johansson, I.A. Abrikosov, M. Oden, “Improving thermal stability of hard coating films via a concept of multicomponent alloying”, Appl. Phys. Lett. 99 (2011) 091903.
    15. J.B. Kim, B.S. Jun, S.M. Lee, “Improvement of capacity and cyclability of Fe/Si multilayer thin film anodes for lithium rechargeable batteries”, Electrochim. Acta 50 (2005) 3390.
    16. J.P. Chu, Y.C. Wang, “Sputter-deposited Cu/Cu(O) multilayers exhibiting enhanced strength and tunable modulus”, Acta Mater. 58 (2010) 6371.
    17. S.A. Barnett, A. Madan, “Hardness and stability of metal–nitride nanoscale multilayers”, Scr. Mater. 50 (2004) 739.
    18. W.D. Sproul, “Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings”, Surf. Coat. Technol. 86 (1996) 170.
    19. M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, “Concepts for the design of advanced nanoscale PVD multilayer protective thin films”, J. Alloy. Compd. 483 (2009) 321.
    20. D.G. Kim, T.Y. Seong, Y.J. Baik, “Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition”, Surf. Coat. Technol. 153 (2002) 79.
    21. Y.Z. Tsai, J.G. Duh, “Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition”, Surf. Coat. Technol. 200 (2006) 1683.
    22. P.C. Yashar, W.D. Sproul, “Nanometer scale multilayered hard coatings”, Vacuum 55 (1999) 179.
    23. P. Eh Hovsepian, Q. Luo, G. Robinson, M. Pittman, M. Howarth, D. Doerwald, R. Tietema, W.M. Sim, A. Deeming, T. Zeus, “TiAlN/VN superlattice structured PVD coatings: A new alternative in machining of aluminium alloys for aerospace and automotive components”, Surf. Coat. Technol. 201 (2006) 265.
    24. J.W. Lee, J.G. Duh, “Nanomechanical properties evaluation of chromium nitride films by nanoindentation and nanowear techniques”, Surf. Coat. Technol. 188-189 (2004) 655.
    25. C.H. Lin, J.G. Duh, J.W. Yeh, “Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter”, Surf. Coat. Technol. 201 (2007) 6304.
    26. C.H. Lin, J.G. Duh, “Corrosion behavior of (Ti-Al-Cr-Si-V)xNy coatings on mild steels derived from RF magnetron sputtering”, Surf. Coat. Technol. 203 (2008) 558.
    27. K. Kutschej, P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer, “Influence of oxide phase formation on the tribological behaviour of Ti–Al–V–N coatings”, Surf. Coat. Technol. 200 (2005) 1731.
    28. G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, “A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings”, Tribol. Lett. 17 (2004) 751.
    29. R. Franza, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik, V.H. Derflingerd, C. Mitterer, “High-temperature low-friction properties of vanadium-alloyed AlCrN Coatings”, Tribol. Lett. 23 (2006) 101.
    30. N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, “Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings”, Wear 262 (2007) 1152.
    31. N.N. Greenwood, A. Earnshaw, “Chemistry of the Elements”, second ed., Butterworth-Heinemann, Oxford, 1997.
    32. D.R. Lide, “CRC Handbook of Chemistry and Physics”, eighty-fifth ed., CRC Press, Boca Raton, FL, USA, 2004.
    33. S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, S.H. Sheng, A. S. Argon, “Superhard nanocomposites: Origin of hardness enhancement, properties and applications”, Surf. Coat. Technol. 204 (2010) 1898.
    34. S. Veprek, M.G.J. Veprek-Heijman, “Industrial applications of superhard nanocomposite coatings”, Surf. Coat. Technol. 202 (2008) 5063.
    35. S. Veprek, “Recent search for new superhard materials: Go nano!”, J. Vac. Sci. Technol. A 31 (2013) 050822.
    36. H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76 (1995) 587.
    37. B. Bhushan, “Overview of coating materials, surface treatments and screening techniques for tribological applications Part I: Coating materials and surface treatments”, Testing of Metallic and Inorganic Coatings (W.B. Harding and G.A. DiBari, eds.), special Publication STP 947, 289-309, ASTM, Philadelphia, PA. USA, 1987.
    38. Y. Chiba, T. Omura, H. Ichimura, “Wear resistance of arc ion-plated chromium nitride coatings”, J. Mater. Res. 8 (1993) 1109.
    39. D.S. Rickerby, A. Matthews, “Advanced surface coatings: a handbook of surface engineering”, Glasgow, Blackie, 1991.
    40. R. Behrisch Ed., “Sputtering by particle bombardment”, Applied Physics, Berlin, Springer, 1981.
    41. P.D. Toensend, J.C. Kelly, “Ion implantation: Sputtering and their applications”, Academic Press, 1976.
    42. M. Ohring Ed., “The materials science of thin films”, Academic Press, London, UK, 1992.
    43. P.D. Davidse, L.I. Maissel, “Dielectric Thin Films through rf Sputtering”, J. Appl. Phys. 37 (1966) 574.
    44. A.A. Voevodin, J.P. O‟Neill, S.V. Prasad, J.S. Zabinski, “Nanocrystalline WC and WC/a-C Composite Coatings Produced from Intersected Plasma Fluxes at Low Deposition Temperature”, J. Vac. Sci. Technol. A, 17 (1999) 986.
    45. H. Holleck, V. Schier, “Multilayer PVD coatings for wear protection”, Surf. Coat. Technol. 76 (1995) 328.
    46. H. Holleck, “Material selection for hard coatings”, J. Vac. Sci. Technol. A 4 (1986) 2661.
    47. M. Bin-Sudin, A. Leyland, A.S. James, A. Matthews, J. Housden, B. Garside, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings”, Surf. Coat. Technol. 74 (1995) 897.
    48. H. Ichimura, A. Kawana, “High temperature oxidation of ion-plated CrN films”, J. Mater. Res. 9 (1994) 151.
    49. J.N. Tu, J.G. Duh, S.Y. Tsai, “Morphology, mechanical properties, and oxidation behavior of reactively sputtered Cr–N films”, Surf. Coat. Technol. 133 (2000) 181.
    50. H.L. Bai, Z.J. He, W.B. Mi, P. Wu, Z.Q. Li, E.Y. Jiang, “Dual facing target sputtered amorphous CoMoN/CN compound soft X-ray multilayer: structures and thermal stability”, Appl. Phys. A 77 (2003) 533.
    51. H. Ichimura, A. Kawana, “High temperature oxidation of ion-plated TiN and TiAlN films”, J. Mater. Res. 8 (1996) 1093.
    52. L.A. Donohue, I.J. Smith, W.-D. Münz, I. Petrov, J.E. Greene, “Microstructure and oxidation-resistance of Ti1-x-y-zAlxCryYzN layers grown by combined steered-arc/unbalanced-magnetron-sputter deposition”, Surf. Coat. Technol. 94 (1997) 226.
    53. “Phase Equilibria Diagrams: Phase Diagrams for Ceramists: Vol.10. Borides, Carbides, and Nitrides”, A.E. McHale (Ed.), The American Ceramic Society, Westerville, 1994
    54. L. Cunha, M. Andritschky, L. Rebouta, R. Silva, “Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering”, Thin Solid Films 317 (1998) 351.
    55. S. Yang, K.E. Cooke, X. Li, F. McIntosh, D.G. Teer, “CrN-based wear resistant hard coatings for machining and forming tools”, J. Phys. D: Appl. Phys. 42 (2009) 104001.
    56. M.C. Kang, I.W. Park, K.H. Kim, “Performance evaluation of AIP-TiAlN coated tool for high speed machinings”, Surf. Coat. Technol. 163 (2003) 734.
    57. S.D. Kim, I.S. Hwang, J.K. Rhee, T.H. Cha, H.D. Kim, “Oxidation resistance of sputtered Ti1-xAlxN films for complementary metal oxide semiconductor storage node electrode barriers”, Electrochem. Solid State Lett. 4 (2001) G7.
    58. M. Hock, E. Schaffer, W. Doll, G. Kleer, “Composite coating materials for the moulding of diffractive and refractive optical components of inorganic glasses”, Surf. Coat. Technol. 163 (2003) 689.
    59. A. Horling, L. Hultman, M. Oden, J. Sjolen, L. Karlsson, “Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools”, Surf. Coat. Technol. 191 (2005) 384.
    60. G.T. Liu, J.G. Duh, K.H. Chung, J.H. Wang, “Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys”, Surf. Coat. Technol. 200 (2005) 2100.
    61. C.T. Huang, J.G. Duh, “Deposition of (Ti,A1)N films on A2 tool steel by reactive r.f. magnetron sputtering”, Surf. Coat. Technol. 71 (1995) 259.
    62. B. Alling, M. Oden, L. Hultman, I.A. Abrikosov, “Pressure enhancement of the isostructural cubic decomposition in Ti1−xAlxN”, Appl. Phys. Lett. 95 (2009) 181906.
    63. Y. Makino, “Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method”, Surf. Coat. Technol. 193 (2005) 185.
    64. A.E. Reiter, V.H. Derflinger, B. Hanselmann, T. Bachmann, B. Sartory, “Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation”, Surf. Coat. Technol. 200 (2005) 2114.
    65. K. Bobzin, E. Lugscheider, R. Nickel, N. Bagcivan, A. Kramer, “Wear behavior of Cr1−xAlxN PVD-coatings in dry running conditions”, Wear 263 (2007) 1274.
    66. J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses”, Surf. Coat. Technol. 202 (2008) 3272.
    67. A.E. Reiter, C. Mitterer, B. Sartory, “Oxidation of arc-evaporated Al1−xCrxN coatings”, J. Vac. Sci. Technol. A 25(4) (2007) 771.
    68. X.Z. Ding, X.T. Zeng, “Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering”, Surf. Coat. Technol. 200 (2005) 1372.
    69. H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings”, Surf. Coat. Technol. 201 (2006) 2193.
    70. M. Brizuela, A. Garcia-Luis, I. Braceras, J.I. Oñate, J.C. Sánchez-López, D. Marínez-Martínez, C. López-Cartes, A. Fernández, “Magnetron sputtering of Cr(Al)N coatings: Mechanical and tribological study”, Surf. Coat. Technol. 200 (2005) 192.
    71. M. Kawate, A.K. Hashimoto, T. Suzuki, “Oxidation resistance of Cr1−XAlXN and Ti1−XAlXN films”, Surf. Coat. Technol. 165 (2003) 163.
    72. O. Banakh, P.E. Schmid, R. Sanjines, F. Levy, “High-temperature oxidation resistance of Cr1−xAlxN thin films deposited by reactive magnetron sputtering”, Surf. Coat. Technol. 163 (2003) 57.
    73. G. Andersson, “Studies on Vanadium Oxides”, Acta Chem. Scand. 8 (1954) 1599.
    74. H.A. Wriedt, “The O−V (Oxygen−Vanadium) System” J. Phase Equilib. 10 (1989) 271.
    75. M.S. Seehra, H.P.J. Wijn, 6.1.4.2 The vanadium compounds VnO2n+1, in: H.P.J.
    Wijn (Ed.), Springer Materials - The Landolt-Börnstein Database, Vol. 27G of
    Landolt-Börnstein - Group III Condensed Matter, October 2012, http://dx.doi.
    org/10.1007/10057685_14.
    76. W.-D. Münz, “Large-Scale Manufacturing of Nanoscale Multilayered Hard Coatings Deposited by Cathodic Arc/Unbalanced Magnetron Sputtering”, MRS Bulletin 28 (2003) 173.
    77. O. Storz, H. Gasthuber, M. Woydt, “Tribological properties of thermal-sprayed Magnéli-type coatings with different stoichiometries (TinO2n−1)”, Surf. Coat. Technol. 140 (2001) 76.
    78. T. Kitagawa, A. Kubo, K. Maekawa, “Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn”, Wear 202 (1997) 142.
    79. J.H. Ouyang, S. Sasaki, “Tribo-oxidation of cathodic arc ion-plated (V,Ti)N coatings sliding against a steel ball under both unlubricated and boundary-lubricated conditions”, Surf. Coat. Technol. 187 (2004) 343.
    80. J.H. Ouyang, T. Murakami, S. Sasaki,” High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating”, Wear 263 (2007) 1347.
    81. M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa, “Friction and wear properties of CrAlN and CrVN films deposited by cathodic arc ion plating method”, Surf. Coat. Technol. 177 (2004) 627.
    82. R. Franz, J. Neidhardt, B. Sartory, R. Tessadri, C. Mitterer, “Micro- and bonding structure of arc-evaporated AlCrVN hard coatings”, Thin Solid Films 516 (2008) 6151.
    83. R. Franz, J. Neidhardt, R. Kaindl, B. Sartory, R. Tessadri, M. Lechthaler, P. Polcik,
    C. Mitterer, “Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings”, Surf. Coat. Technol. 203 (2009) 1101.
    84. J.K. Park, Y.J. Baik, “Increase of hardness and oxidation resistance of VN coating by nanoscale multilayered structurization with AlN”, Mater. Lett. 62 (2008) 2528.
    85. G. Li, J. Lao, J. Tian, Z. Han, M. Gu, “Coherent growth and mechanical properties of AlN/VN multilayers”, J. Appl. Phys. 95 (2004) 92.
    86. P.H. Mayrhofer, P. Eh Hovsepian, C. Mitterer, W.-D. Münz, “Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings”, Surf. Coat. Technol. 177 (2004) 341.
    87. Q. Luo, “Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN”, Wear 271 (2011) 2058.
    88. Y. Qiu, S. Zhang, J.W. Lee, B. Li, Y. Wang, D. Zhao, “Self-lubricating CrAlN/VN multilayer coatings at room temperature”, Appl. Surf. Sci. 279 (2013) 189.
    89. J.S. Koehler, “Attempt to design a strong solid”, Phys. Rev. B 2 (1970) 547.
    90. S.L. Lehoczky, “Retardation of dislocation generation and motion in thin-layered metal laminates”, Phys. Rev. Lett. 41 (1978) 1814.
    91. X. Chu, S.A. Barnett, “Model of superlattice yield stress and hardness enhancements”, J. Appl. Phys. 77(9) (1995) 4403.
    92. M. Kato, T. Mori, L.H. Schwartz, “Hardening by spinodal modulated structure”, Acta Metall. 28 (1980) 285.
    93. M. Shinn, L. Hultman, S.A. Barnett, “Growth, structure, and microhardness of epitaxial TiN/NbN superlattices”, J. Mater. Res. 7 (1992) 901.
    94. L. Hultman, “Synthesis, structure, and properties of superhard superlattice coatings”, A. Cavaleiro, J.Th.M. De Hosson (Eds.), Nanostructured Coatings, Springer, New York, 2006
    95. P.M. Anderson, C. Li, “Hall-Petch relations for multilayered materials”, Nanostruct. Mater. 5 (1995) 349.
    96. P.M. Anderson, T. Foecke, P.M. Hazzledine, “Dislocation-based deformation mechanisms in metallic nanolaminates”, MRS Bull. 24 (1999) 27.
    97. H. Soderberg, M. Oden, L. Hultman, “Nanostructure formation during deposition of TiN/SiNx nanomultilayer films by reactive dual magnetron sputtering”, J. Appl. Phys. 97 (2005) 114327.
    98. A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett, “Stabilization of cubic AlN in epitaxial AlN/TiN superlattices”, Phys. Rev. Lett. 78 (1978) 1743.
    99. I.W. Kim, Q. Li, L.D. Marks, S.A. Barnett, “Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices”, Appl. Phys. Lett. 78 (2001) 892.
    100. Y.Y. Wang, M.S. Wong, W.J. Chia, J. Rechner, W.D. Sproul, “Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings”, J. Vac. Sci. Technol. A 16 (1998) 3341.
    101. M. Setoyama, A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura, “Formation of cubic-AIN in TiN/AIN superlattice”, Surf. Coat. Technol. 86 (1996) 225.
    102. M.S. Wong, G.Y. Hsiao, S.Y. Yang, “Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings”, Surf. Coat. Technol. 133 (2000) 160.
    103. S.K. Tien, J.G. Duh, “Effect of heat treatment on mechanical properties and microstructure of CrN/AlN multilayer coatings”, Thin Solid Films 494 (2006) 173.
    104. A. Vyas, K.Y. Li, Y.G. Shen, “Influence of deposition conditions on mechanical and tribological properties of nanostructured TiN/CNx multilayer films”, Surf. Coat. Technol. 203 (2009) 967.
    105. M. Cao, D.J. Li, X.Y. Deng, X. Sun, “Synthesis of nanoscale CNx/TiAlN multilayered coatings by ion-beam-assisted deposition”, J. Vac. Sci. Technol. A 26(5) (2008) 1314.
    106. Y.H. Chen, K.W. Lee, W.A. Chiou, Y.W. Chung, L.M. Keer, “Synthesis and structure of smooth, superhard TiN/SiNx multilayer coatings with an equiaxed microstructure”, Surf. Coat. Technol. 146 (2001) 209.
    107. H. Soderberg, M. Oden, T. Larsson, L. Hultman, J.M. Molina-Aldareguia, “Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers”, Appl. Phys. Lett. 88 (2006) 191902.
    108. Y. Dong, W. Zhao, J. Yue, G. Li, “Crystallization of Si3N4 layers and its influences on the microstructure and mechanical properties of ZrN/Si3N4 nanomultilayers”, Appl. Phys. Lett. 89 (2006) 121916.
    109. C. Mendibide, J. Fontaine, P. Steyer, C. Esnouf, “Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings”, Tribol. Lett. 17 (2004) 779.
    110. J. Musil, F. Kunc, H. Zeman, H. Polakova, “Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings”, Surf. Coat. Technol. 154 (2002) 304.
    111. C.M. Cheng, Y.T. Cheng, “On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile”, Appl. Phys. Lett. 71 (1997) 2623.
    112. W.C. Oliver, “Alternative technique for analyzing instrumented indentation data”, J. Mater. Res. 16 (2001) 3202.
    113. W.C. Oliver, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Matter. Res. 7 (1992) 1564.
    114. P.R. Chalker, S.J. Bull, D.S. Rickerby, “A review of the methods for the evaluation of coating-substrate adhesion”, Mater. Sci. Eng. A 140 (1991) 583.
    115. D.B. Williams, C.B. Carter, “Transmission Electron Microscopy”, 2nd ed. Plenum Press, New York, 2009.
    116. J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, “Scanning Electron Microscopy and X-ray Microanalysis”, 3rd ed. Plenum Press, New York, 2003.
    117. S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Veprek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surf. Coat. Technol. 194 (2005) 143.
    118. A. Leyland, A. Matthews, “On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour”, Wear 246 (2000) 1.
    119. T.Y. Tsui, G.M. Pharr, W.C. Oliver, C.S. Bhatia, R.L. White, S. Anders, A. Anders, I.G. Brown, “Nanoindentation and nanoscratching of hard carbon coatings for magnetic disks”, Mater. Res. Soc. Symp. Proc. 383 (1995) 447.
    120. Y. Qiu, S. Zhang, J.W. Lee, B. Li, Y. Wang, D. Zhao, D. Sun, “Towards hard yet self-lubricious CrAlSiN coatings”, J. Alloys Compd. 618 (2015) 132.
    121. N. Fateh, G.A. Fontalvo, G. Gassner, C. Mitterer, “The beneficial effect of high temperature oxidation on the tribological behaviour of V and VN coatings”, Tribol. Lett. 28 (2007) 1.
    122. Y. Ningyi, L. Jinuha, L. Chenglu, “Valence reduction process from sol-gel V2O5 to VO2 thin films”, Appl. Surf. Sci. 191 (2002) 176.
    123. R. Franz, J. Schnöller, H. Hutter, C. Mitterer, “Oxidation and diffusion study on AlCrVN hard coatings using oxygen isotopes 16O and 18O”, Thin Solid Films 519 (2011) 3974.
    124. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, second ed., Butterworth-Heinemann, Oxford, 1997.
    125. T. Polcar, N.M.G. Parreira, R. Novák, “Friction and wear behaviour of CrN coating at temperatures up to 500 °C”, Surf. Coat. Technol. 201 (2007) 5228.
    126. T. Polcar, A. Cavaleiro, “High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings”, Surf. Coat. Technol. 206 (2011) 1244.
    127. J. Lin, W. D. Sproul, “Structure and properties of Cr2O3 coatings deposited using DCMS, PDCMS, and DOMS”, Surf. Coat. Technol. 276 (2015) 70.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE