研究生: |
陳竺言 Chen, Chu-Yen |
---|---|
論文名稱: |
Tau蛋白中3R及4R區域對早期大鼠海馬迴神經細胞極性之影響 The Effects of 3R and 4R Tau Repeats on Structural Polarization in Early Development of Rat Hippocampal Neurons |
指導教授: |
張兗君
Chang, Yen-Chung |
口試委員: |
周姽嫄
Chow, Wei-Yuan 彭明德 Perng, Ming-Der |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | Tau蛋白 、神經極性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The microtubule associated protein Tau (MAPT) is a neuronal specific protein and plays important roles in regulating microtubule stabilities and neuronal polarization. Alternative RNA splicing of the single Tau gene produces six different isoforms in the central nerve system, which differ by the absence or presence of one or two acidic insertions (called 0N, 1N or 2N) in the amino-terminus and three or four microtubule binding repeats (called 3R and 4R) in the carboxyl-terminal region. In cultured rat hippocampal neurons, the development-dependent alterations in the cellular distributions of 3R-and 4R-Tau suggest that they regulate the microtubule cytoskeleton of growing neurons in a spatially and temporally specific and yet differential manner. Moreover, earlier studies in our laboratory also suggest that 3R-and 4R-Tau isoforms interact with microtubules of different dynamic states in axonal growth cone. Therefore, in order to investigate the different effects of 3R- and 4R-Tau proteins on microtubule stabilities during neuronal development, I have constructed two plasmids respectively consisting of the 3R and 4R domains of rat Tau with the C-termini tagged by DsRed (called 3RDsRed and 4RDsRed respectively). The 3RDsRed and 4RDsRed constructs are transfected into cultured hippocampal neurons, and the transfected neurons are subjected to fluorescence immunostaining to study the effects of over-expressing 3R- and 4R-regions of Tau on structural polarization and neurite growth. The results reveal that the over-expression of neither 3R- nor 4R-region affects neuronal polarity. Nevertheless, over-expressing 4R region of Tau protein impedes neurite growth, while 3R region does not overtly affect neurite growth. Combined with previous studies, our results suggest that 3R and 4R Tau isoforms display distinct roles on stabilizing microtubule and thus participate in the regulation of neurite growth during the development of rat hippocampal neurons in culture.
Amos, L.A. 2011. What tubulin drugs tell us about microtubule structure and dynamics. Seminars in cell & developmental biology. 22:916-926.
Butner, K.A., and M.W. Kirschner. 1991. Tau protein binds to microtubules through a flexible array of distributed weak sites. The Journal of cell biology. 115:717-730.
Caceres, A., and K.S. Kosik. 1990. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature. 343:461-463.
Caceres, A., J. Mautino, and K.S. Kosik. 1992. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron. 9:607-618.
Cheng, H.H., Z.H. Huang, W.H. Lin, W.Y. Chow, and Y.C. Chang. 2009. Cold-induced exodus of postsynaptic proteins from dendritic spines. Journal of neuroscience research. 87:460-469.
Conde, C., and A. Caceres. 2009. Microtubule assembly, organization and dynamics in axons and dendrites. Nature reviews. Neuroscience. 10:319-332.
Dawson, H.N., A. Ferreira, M.V. Eyster, N. Ghoshal, L.I. Binder, and M.P. Vitek. 2001. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. Journal of cell science. 114:1179-1187.
Dent, E.W., and K. Kalil. 2001. Axon branching requires interactions between dynamic microtubules and actin filaments. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21:9757-9769.
Dotti, C.G., C.A. Sullivan, and G.A. Banker. 1988. The establishment of polarity by hippocampal neurons in culture. The Journal of neuroscience : the official journal of the Society for Neuroscience. 8:1454-1468.
Goedert, M., and R. Jakes. 1990. Expression of separate isoforms of human tau-protein correlation with the tau-pattern in brain and effects on tubulin polymerization. Embo J. 9:4225-4230.
Goode, B.L., M. Chau, P.E. Denis, and S.C. Feinstein. 2000. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. The Journal of biological chemistry. 275:38182-38189.
Gorath, M., T. Stahnke, T. Mronga, O. Goldbaum, and C. Richter-Landsberg. 2001. Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes. Glia. 36:89-101.
Gustke, N., B. Trinczek, J. Biernat, E.M. Mandelkow, and E. Mandelkow. 1994. Domains of tau protein and interactions with microtubules. Biochemistry. 33:9511-9522.
Hanger, D.P., and S. Wray. 2010. Tau cleavage and tau aggregation in neurodegenerative disease. Biochem Soc Trans. 38:1016-1020.
Heidary, G., and M.E. Fortini. 2001. Identification and characterization of the Drosophila tau homolog. Mechanisms of development. 108:171-178.
Hong, M., V. Zhukareva, V. Vogelsberg-Ragaglia, Z. Wszolek, L. Reed, B.I. Miller, D.H. Geschwind, T.D. Bird, D. McKeel, A. Goate, J.C. Morris, K.C. Wilhelmsen, G.D. Schellenberg, J.Q. Trojanowski, and V.M.Y. Lee. 1998. Mutation-specific functional impairments in distinct Tau isoforms of hereditary FTDP-17. Science. 282:1914-1917.
Hutton, M., C.L. Lendon, P. Rizzu, M. Baker, S. Froelich, H. Houlden, S. Pickering-Brown, S. Chakraverty, A. Isaacs, A. Grover, J. Hackett, J. Adamson, S. Lincoln, D. Dickson, P. Davies, R.C. Petersen, M. Stevens, E. de Graaff, E. Wauters, J. van Baren, M. Hillebrand, M. Joosse, J.M. Kwon, P. Nowotny, L.K. Che, J. Norton, J.C. Morris, L.A. Reed, J. Trojanowski, H. Basun, L. Lannfelt, M. Neystat, S. Fahn, F. Dark, T. Tannenberg, P.R. Dodd, N. Hayward, J.B. Kwok, P.R. Schofield, A. Andreadis, J. Snowden, D. Craufurd, D. Neary, F. Owen, B.A. Oostra, J. Hardy, A. Goate, J. van Swieten, D. Mann, T. Lynch, and P. Heutink. 1998. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 393:702-705.
Kumaran, R., A. Kingsbury, I. Coulter, T. Lashley, D. Williams, R. de Silva, D. Mann, T. Revesz, A. Lees, and R. Bandopadhyay. 2007. DJ-1 (PARK7) is associated with 3R and 4R tau neuronal and glial inclusions in neurodegenerative disorders. Neurobiol Dis. 28:122-132.
Levy, S.F., A.C. Leboeuf, M.R. Massie, M.A. Jordan, L. Wilson, and S.C. Feinstein. 2005. Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners. Implications for neurodegeneration. The Journal of biological chemistry. 280:13520-13528.
Liu, F., and C.X. Gong. 2008. Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener. 3:8.
Mandelkow, E.M., and E. Mandelkow. 2012. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor perspectives in medicine. 2:a006247.
McVicker, D.P., G.J. Hoeprich, A.R. Thompson, and C.L. Berger. 2014. Tau interconverts between diffusive and stable populations on the microtubule surface in an isoform and lattice specific manner. Cytoskeleton. 71:184-194.
Sergeant, N., A. Bretteville, M. Hamdane, M.L. Caillet-Boudin, P. Grognet, S. Bombois, D. Blum, A. Delacourte, F. Pasquier, E. Vanmechelen, S. Schraen-Maschke, and L. Buee. 2008. Biochemistry of Tau in Alzheimer's disease and related neurological disorders. Expert Rev Proteomics. 5:207-224.
Spillantini, M.G., J.R. Murrell, M. Goedert, M.R. Farlow, A. Klug, and B. Ghetti. 1998. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences of the United States of America. 95:7737-7741.
Tahirovic, S., and F. Bradke. 2009. Neuronal polarity. Cold Spring Harbor perspectives in biology. 1:a001644.
Trinczek, B., J. Biernat, K. Baumann, E.M. Mandelkow, and E. Mandelkow. 1995. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Molecular biology of the cell. 6:1887-1902.
Witte, H., D. Neukirchen, and F. Bradke. 2008. Microtubule stabilization specifies initial neuronal polarization. The Journal of cell biology. 180:619-632.
Wu, H.-I., G.-H. Cheng, Y.-Y. Wong, C.-M. Lin, W. Fang, W.-Y. Chow, and Y.-C. Chang. 2010a. A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab on a Chip:-.
Wu, H.I., G.H. Cheng, Y.Y. Wong, C.M. Lin, W. Fang, W.Y. Chow, and Y.C. Chang. 2010b. A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab on a chip. 10:647-653.
Zeitelhofer, M., J.P. Vessey, S. Thomas, M. Kiebler, and R. Dahm. 2009. Transfection of cultured primary neurons via nucleofection. Current protocols in neuroscience / editorial board, Jacqueline N. Crawley ... [et al.]. Chapter 4:Unit4 32.
Zeitelhofer, M., J.P. Vessey, Y. Xie, F. Tubing, S. Thomas, M. Kiebler, and R. Dahm. 2007. High-efficiency transfection of mammalian neurons via nucleofection. Nature protocols. 2:1692-1704.