簡易檢索 / 詳目顯示

研究生: 讓德選
Jang, Te-Hsuan
論文名稱: 微型核醣核酸485-5p藉由抑制keratin 17經integrin/FAK/Src/ERK/ β-catenin路徑來調控口腔癌幹細胞特性及抗藥性
MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway
指導教授: 王陸海
Wang, Lu‑Hai
莊双恩
Chuang, Shuang‑En
口試委員: 汪宏達
Wang, Horng-Dar
陳雅雯
Chen, Ya-Wen
夏興國
Shiah, Shine-Gwo
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 69
中文關鍵詞: 角蛋白17微型核醣核酸485-5p整合素β4β-連環蛋白達沙替尼癌症幹細胞特性抗藥性口腔鱗狀癌細胞癌轉移
外文關鍵詞: keratin 17, miR-485-5p, integrin β4, β-catenin, dasatinib, cancer stemness, chemoresistance, oral squamous cell carcinoma, metastasis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔鱗狀癌細胞的抗藥性經常導致腫瘤的復發和轉移,而這仍然是一個未解決的挑戰。越來越多的報導指出,癌症幹細胞的存在是抗藥性、腫瘤復發和轉移的關鍵因素。因此,找出調節癌症幹細胞的機制和開發其抑製劑將有助於改善口腔鱗狀癌細胞的治療。在這項研究中,觀察到在高侵襲性的口腔鱗狀癌細胞和晚期腫瘤組織中KRT17的表達顯著升高,並且較高的KRT17表達與較差的存活率相關。減少口腔鱗狀癌細胞中的KRT17基因表達會減弱它們幹細胞的特性,包括顯著降低的球體形成能力以及幹細胞和上皮細胞間質轉化標記物的表達。我們確定了一個由KRT17新型的信號傳遞過程,就是KRT17與plectin結合導致integrin β4/α6的活化,FAK、Src和ERK的磷酸化增加,以及β-catenin的穩定化和進入細胞核。這信號傳遞反應與增強口腔鱗狀癌細胞的幹細胞特性、以及CD44和EGFR的表達升高息息相關。我們證明了KRT17是miRNA-485-5p的直接靶標。增強miRNA-485-5p的表達能夠抑制口腔鱗狀癌細胞球體的形成並增加癌細胞對cisplatin和carboplatin敏感性,上述這些抑制現象可透過KRT17 的高表達來挽救。Dasatinib可以抑制KRT17引發的Src活化也可以造成口腔鱗狀癌細胞對藥物更敏感。在人類口腔鱗狀癌細胞異種移植小鼠模型中,減少癌細胞中KRT17的表達顯著抑制了腫瘤生長,加上cisplatin的聯合治療有更明顯的抑制腫瘤作用。如所預期,在此減少KRT17表達的小鼠模型實驗中也觀察到integrin β4、active β-catenin、CD44和EGFR的表現量顯著降低。總結來說,我們的研究揭露了一種新型的miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/β-catenin訊息傳導途徑,具有調控口腔鱗狀癌細胞的幹細胞特性和對化療藥物抗藥性的功能。我們這項研究為抑制口腔鱗狀癌細胞提供了一種新的治療策略。


    The development of drug resistance in oral squamous cell carcinoma (OSCC) leading to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling the mechanisms regulating CSCs, as well as useful targets for developing CSCs inhibitors will be instrumental for improving OSCC therapy. In this study, we observed significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere-forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin β4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of β-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment inhibited KRT17-mediated Src activation and increased OSCC chemo drug sensitivity. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin β4, active β-catenin, CD44 and EGFR were observed in the tumors induced by the KRT17 knockdown OSCC cells. Taken together, we have unveiled a novel miRNA-485-5p/KRT17/integrin/FAK /Src/ERK/β-catenin signaling pathway that is capable of modulating OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counteract chemoresistance.

    摘要 ………………………………………………………………………………. I Abstract …………………………………………………………………………… II 致謝 …………………………………………………………………………......... IV Contents ……………………………………………………………………….… V List of Figures and Tables ……………………………………………….…….…. VII Abbreviations ……………………………………………………………….…… IX Chapter 1: Introduction 1.1 Oral cancer ………………………………………………………….….... 1 1.2 Cancer stem cells …………………………………………………..….…. 2 1.3 Keratins ………………………………………………………………...... 2 1.4 MicroRNAs……………………………………………………………… 4 1.5 Aims of this study …………………………………………………….…. 4 Chapter 2: Materials and methods 2.1 Clinical specimens ………………………………………………………. 6 2.2 Cell Lines and transfections ……………………………………….……. 6 2.3 Microarray analysis ……………………………………………….…….. 7 2.4 Plasmid construction ……………………………………………………. 7 2.5 Sphere formation assay …………………………………………………. 7 2.6 Cell proliferation assay ………………………………………………...... 8 2.7 Transwell cell migration and invasion assay …………………………… 8 2.8 Soft agar assay ……………………………………………………..……. 9 2.9 Preparation of cytoplasmic/nuclear proteins …………………….….. 9 2.10 Western blot assay in OSCC …………………………………….…...... 9 2.11 Reverse transcription quantitative polymerase chain reaction (RT-qPCR) ……………………………………………………….…..... 10 2.12 Proximity ligation assay ……………………………………………...... 10 2.13 3-untranslated region (3UTR) luciferase reporter assay ……………… 11 2.14 Immunohistochemistry (IHC) and immunofluorescence assay ………... 11 2.15 Mouse xenograft model and tumor growth assay ………………..……... 11 2.16 Patient survival rate …………………………………………………….. 12 2.17 Statistical analysis …………………………………………………….... 12 Chapter 3: Results and Discussions 3.1 Identification of KRT17 as a prognosis biomarker for OSCC ………….. 13 3.2 KRT17 regulates cancer stemness and epithelial mesenchymal transition (EMT) properties in OSCC …………………………….……... 14 3.3 KRT17 associates with plectin to regulate integrin/FAK/Src/ERK /β-catenin signaling in OSCC …………………………………….……... 15 3.4 KRT17 regulates stemness markers CD44 and EGFR via activation of integrin/Src/β-catenin signaling cascade ……………………..….…... 18 3.5 miR-485-5p targets KRT17 and regulates OSCC sphere formation and drug resistance …………………………………………………..….. 19 3.6 Inhibition of KRT17 enhances OSCC sensitivity toward Chemotherapeutics ……………………………………………….…..… 21 3.7 Inhibition of KRT17 sensitizes OSCC cells via suppressing cancer stemness and integrin/-catenin signaling to impede tumor growth …….. 21 3.8 Discussion ……………………………………………………………...... 22 Chapter 4: Conclusions and Future Perspective 4.1 Conclusions ………………………………………………………….….. 28 4.2 Future Perspective ……………………………………………………..... 28 Chapter 5: References References ……………………………………………………………..... 60

    Adams A, Warner K, Pearson AT, Zhang Z, Kim HS, Mochizuki D, Basura G, Helman J, Mantesso A, Castilho RM et al. 2015. Aldh/cd44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas. Oncotarget. 6(29):26633-26650.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. 2003. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 100(7):3983-3988.
    Atkinson RL, Yang WT, Rosen DG, Landis MD, Wong H, Lewis MT, Creighton CJ, Sexton KR, Hilsenbeck SG, Sahin AA et al. 2013. Cancer stem cell markers are enriched in normal tissue adjacent to triple negative breast cancer and inversely correlated with DNA repair deficiency. Breast Cancer Res. 15(5):R77.
    Baillie R, Tan ST, Itinteang T. 2017. Cancer stem cells in oral cavity squamous cell carcinoma: A review. Front Oncol. 7:112.
    Bauman JE, Duvvuri U, Gooding WE, Rath TJ, Gross ND, Song J, Jimeno A, Yarbrough WG, Johnson FM, Wang L et al. 2017. Randomized, placebo-controlled window trial of egfr, src, or combined blockade in head and neck cancer. JCI Insight. 2(6):e90449.
    Brooks HD, Glisson BS, Bekele BN, Johnson FM, Ginsberg LE, El-Naggar A, Culotta KS, Takebe N, Wright J, Tran HT et al. 2011. Phase 2 study of dasatinib in the treatment of head and neck squamous cell carcinoma. Cancer. 117(10):2112-2119.
    Castañón MJ, Walko G, Winter L, Wiche G. 2013. Plectin-intermediate filament partnership in skin, skeletal muscle, and peripheral nerve. Histochem Cell Biol. 140(1):33-53.
    Chakraborty C, Sharma AR, Sharma G, Lee S-S. 2021. Therapeutic advances of mirnas: A preclinical and clinical update. Journal of Advanced Research. 28:127-138.
    Cheng Y, Li S, Gao L, Zhi K, Ren W. 2021. The molecular basis and therapeutic aspects of cisplatin resistance in oral squamous cell carcinoma. Front Oncol. 11:761379.
    Chiang CH, Wu CC, Lee LY, Li YC, Liu HP, Hsu CW, Lu YC, Chang JT, Cheng AJ. 2016. Proteomics analysis reveals involvement of krt17 in areca nut-induced oral carcinogenesis. J Proteome Res. 15(9):2981-2997.
    Coletta RD, Yeudall WA, Salo T. 2020. Grand challenges in oral cancers. Front Oral Health. 1:3.
    D'Souza S, Addepalli V. 2018. Preventive measures in oral cancer: An overview. Biomed Pharmacother. 107:72-80.
    de Pereda JM, Lillo MP, Sonnenberg A. 2009. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J. 28(8):1180-1190.
    Ding D, Stokes W, Eguchi M, Hararah M, Sumner W, Amini A, Goddard J, Somerset H, Bradley C, McDermott J et al. 2019. Association between lymph node ratio and recurrence and survival outcomes in patients with oral cavity cancer. JAMA Otolaryngol Head Neck Surg. 145(1):53-61.
    Duan J, Zhang H, Li S, Wang X, Yang H, Jiao S, Ba Y. 2017. The role of mir-485-5p/nudt1 axis in gastric cancer. Cancer Cell Int. 17:92.
    Escobar-Hoyos LF, Shah R, Roa-Peña L, Vanner EA, Najafian N, Banach A, Nielsen E, Al-Khalil R, Akalin A, Talmage D et al. 2015. Keratin-17 promotes p27kip1 nuclear export and degradation and offers potential prognostic utility. Cancer Res. 75(17):3650-3662.
    Escobar-Hoyos LF, Yang J, Zhu J, Cavallo JA, Zhai H, Burke S, Koller A, Chen EI, Shroyer KR. 2014. Keratin 17 in premalignant and malignant squamous lesions of the cervix: Proteomic discovery and immunohistochemical validation as a diagnostic and prognostic biomarker. Mod Pathol. 27(4):621-630.
    Hanemaaijer SH, Kok IC, Fehrmann RSN, van der Vegt B, Gietema JA, Plaat BEC, van Vugt M, Vergeer MR, Leemans CR, Langendijk JA et al. 2020. Comparison of carboplatin with 5-fluorouracil vs. Cisplatin as concomitant chemoradiotherapy for locally advanced head and neck squamous cell carcinoma. Front Oncol. 10:761.
    He X, Marchionni L, Hansel DE, Yu W, Sood A, Yang J, Parmigiani G, Matsui W, Berman DM. 2009. Differentiation of a highly tumorigenic basal cell compartment in urothelial carcinoma. Stem Cells. 27(7):1487-1495.
    Hobbs RP, Batazzi AS, Han MC, Coulombe PA. 2016. Loss of keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in hpv16-driven cervical tumorigenesis in vivo. Oncogene. 35(43):5653-5662.
    Hu J, Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Duerksen-Hughes P, Yuan X. 2019. Cancer stem cell self-renewal as a therapeutic target in human oral cancer. Oncogene. 38(27):5440-5456.
    Hu Z, Müller S, Qian G, Xu J, Kim S, Chen Z, Jiang N, Wang D, Zhang H, Saba NF et al. 2015. Human papillomavirus 16 oncoprotein regulates the translocation of β-catenin via the activation of epidermal growth factor receptor. Cancer. 121(2):214-225.
    Huang SH, O'Sullivan B. 2017. Overview of the 8th edition tnm classification for head and neck cancer. Curr Treat Options Oncol. 18(7):40.
    Huang W-C, Jang T-H, Tung S-L, Yen T-C, Chan S-H, Wang L-H. 2019. A novel mir-365-3p/ehf/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J Exp Clin Cancer Res. 38(1):89.
    Huang WC, Chan SH, Jang TH, Chang JW, Ko YC, Yen TC, Chiang SL, Chiang WF, Shieh TY, Liao CT et al. 2014. Mirna-491-5p and git1 serve as modulators and biomarkers for oral squamous cell carcinoma invasion and metastasis. Cancer Res. 74(3):751-764.
    Jeong W-J, Ro EJ, Choi K-Y. 2018. Interaction between wnt/β-catenin and ras-erk pathways and an anti-cancer strategy via degradations of β-catenin and ras by targeting the wnt/β-catenin pathway. npj Precision Oncology. 2(1):5.
    Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. 2020. Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6(1):92.
    Kawai T, Yasuchika K, Ishii T, Katayama H, Yoshitoshi EY, Ogiso S, Kita S, Yasuda K, Fukumitsu K, Mizumoto M et al. 2015. Keratin 19, a cancer stem cell marker in human hepatocellular carcinoma. Clin Cancer Res. 21(13):3081-3091.
    Khan AQ, Ahmed EI, Elareer NR, Junejo K, Steinhoff M, Uddin S. 2019. Role of mirna-regulated cancer stem cells in the pathogenesis of human malignancies. Cells. 8(8):840.
    Khanom R, Nguyen CT, Kayamori K, Zhao X, Morita K, Miki Y, Katsube K, Yamaguchi A, Sakamoto K. 2016a. Keratin 17 is induced in oral cancer and facilitates tumor growth. PLoS One. 11(8):e0161163.
    Khanom R, Nguyen CTK, Kayamori K, Zhao X, Morita K, Miki Y, Katsube K-i, Yamaguchi A, Sakamoto K. 2016b. Keratin 17 is induced in oral cancer and facilitates tumor growth. PLoS One. 11(8):e0161163.
    Kim H, Choi GH, Na DC, Ahn EY, Kim GI, Lee JE, Cho JY, Yoo JE, Choi JS, Park YN. 2011. Human hepatocellular carcinomas with "stemness"-related marker expression: Keratin 19 expression and a poor prognosis. Hepatology. 54(5):1707-1717.
    Kim M, Baek M, Kim DJ. 2017. Protein tyrosine signaling and its potential therapeutic implications in carcinogenesis. Curr Pharm Des. 23(29):4226-4246.
    Kumar M, Nanavati R, Modi TG, Dobariya C. 2016. Oral cancer: Etiology and risk factors: A review. J Cancer Res Ther. 12(2):458-463.
    Lee S-K, Hwang J-H, Choi K-Y. 2018. Interaction of the wnt/β-catenin and ras-erk pathways involving co-stabilization of both β-catenin and ras plays important roles in the colorectal tumorigenesis. Adv Biol Regul. 68:46-54.
    Lin XJ, He CL, Sun T, Duan XJ, Sun Y, Xiong SJ. 2017. Hsa-mir-485-5p reverses epithelial to mesenchymal transition and promotes cisplatin-induced cell death by targeting pak1 in oral tongue squamous cell carcinoma. Int J Mol Med. 40(1):83-89.
    Liu J, Liu L, Cao L, Wen Q. 2018. Keratin 17 promotes lung adenocarcinoma progression by enhancing cell proliferation and invasion. Med Sci Monit. 24:4782-4790.
    Liu J, Zhang J, Wang Z, Xi J, Bai L, Zhang Y. 2021. Knockdown of circaplp2 inhibits progression of colorectal cancer by regulating mir-485-5p/foxk1 axis. Cancer Biother Radiopharm. 36(9):737-752.
    Liu Z, Yu S, Ye S, Shen Z, Gao L, Han Z, Zhang P, Luo F, Chen S, Kang M. 2020. Keratin 17 activates akt signalling and induces epithelial-mesenchymal transition in oesophageal squamous cell carcinoma. J Proteomics. 211:103557.
    Lou C, Xiao M, Cheng S, Lu X, Jia S, Ren Y, Li Z. 2016. Mir-485-3p and mir-485-5p suppress breast cancer cell metastasis by inhibiting pgc-1α expression. Cell Death Dis. 7(3):e2159-e2159.
    Lv X-X, Zheng X-Y, Yu J-J, Ma H-R, Hua C, Gao R-T. 2020. Egfr enhances the stemness and progression of oral cancer through inhibiting autophagic degradation of sox2. Cancer medicine. 9(3):1131-1140.
    Macfarlane L-A, Murphy PR. 2010. Microrna: Biogenesis, function and role in cancer. Curr Genomics. 11(7):537-561.
    Merkin RD, Vanner EA, Romeiser JL, Shroyer ALW, Escobar-Hoyos LF, Li J, Powers RS, Burke S, Shroyer KR. 2017. Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer. Hum Pathol. 62:23-32.
    Merlos-Suárez A, Barriga FM, Jung P, Iglesias M, Céspedes MV, Rossell D, Sevillano M, Hernando-Momblona X, da Silva-Diz V, Muñoz P et al. 2011. The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell stem cell. 8(5):511-524.
    Mikami Y, Fujii S, Nagata K, Wada H, Hasegawa K, Abe M, Yoshimoto RU, Kawano S, Nakamura S, Kiyoshima T. 2017. Gli-mediated keratin 17 expression promotes tumor cell growth through the anti-apoptotic function in oral squamous cell carcinomas. 143(8):1381-1393.
    Mohan SP, Bhaskaran MK, George AL, Thirutheri A, Somasundaran M, Pavithran A. 2019. Immunotherapy in oral cancer. J Pharm Bioallied Sci. 11(Suppl 2):S107-S111.
    Naruse T, Yanamoto S, Matsushita Y, Sakamoto Y, Morishita K, Ohba S, Shiraishi T, Yamada S-I, Asahina I, Umeda M. 2016. Cetuximab for the treatment of locally advanced and recurrent/metastatic oral cancer: An investigation of distant metastasis. Mol Clin Oncol. 5(2):246-252.
    O'Brien CA, Kreso A, Jamieson CHM. 2010. Cancer stem cells and self-renewal. Clin Cancer Res. 16(12):3113-3120.
    Ortiz-Sánchez E, Santiago-López L, Cruz-Domínguez VB, Toledo-Guzmán ME, Hernández-Cueto D, Muñiz-Hernández S, Garrido E, Cantú De León D, García-Carrancá A. 2016. Characterization of cervical cancer stem cell-like cells: Phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget. 7(22):31943-31954.
    Pan Y, Sun H, Hu X, He B, Liu X, Xu T, Chen X, Zeng K, Wang S. 2018. The inhibitory role of mir‑485‑5p in colorectal cancer proliferation and invasion via targeting of cd147. Oncol Rep. 39(5):2201-2208.
    Perez SM, Brinton LT, Kelly KA. 2021. Plectin in cancer: From biomarker to therapeutic target. Cells. 10(9):2246.
    Qiao HF, Liu YL, You J, Zheng YL, Chen LP, Lu XY, Du L, Shan F, Liu MH. 2020. G-5555 synergized mir-485-5p to alleviate cisplatin resistance in ovarian cancer cells via pi3k/akt signaling pathway. J Reprod Immunol. 140:103129.
    Rahman QB, Iocca O, Kufta K, Shanti RM. 2020. Global burden of head and neck cancer. Oral Maxillofac Surg Clin North Am. 32(3):367-375.
    Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. 2021. Microrna therapeutics in cancer: Current advances and challenges. Cancers (Basel). 13(11):2680.
    Reyes M, Peña-Oyarzun D, Maturana A, Torres VA. 2019. Nuclear localization of β-catenin and expression of target genes are associated with increased wnt secretion in oral dysplasia. Oral Oncol. 94:58-67.
    Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. 2004. Oncomine: A cancer microarray database and integrated data-mining platform. Neoplasia. 6(1):1-6.
    Ribatti D, Tamma R, Annese T. 2020. Epithelial-mesenchymal transition in cancer: A historical overview. Transl Oncol. 13(6):100773.
    Roy S, Kar M, Roy S, Saha A, Padhi S, Banerjee B. 2018. Role of β-catenin in cisplatin resistance, relapse and prognosis of head and neck squamous cell carcinoma. Cell Oncol (Dordr). 41(2):185-200.
    Sarkar FH, Li Y, Wang Z, Kong D. 2009. Pancreatic cancer stem cells and emt in drug resistance and metastasis. Minerva Chir. 64(5):489-500.
    Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DA, Rogers MA et al. 2006. New consensus nomenclature for mammalian keratins. J Cell Biol. 174(2):169-174.
    Seltmann K, Cheng F, Wiche G, Eriksson JE, Magin TM. 2015. Keratins stabilize hemidesmosomes through regulation of β4-integrin turnover. J Invest Dermatol. 135(6):1609-1620.
    Seltmann K, Roth W, Kröger C, Loschke F, Lederer M, Hüttelmaier S, Magin TM. 2013. Keratins mediate localization of hemidesmosomes and repress cell motility. The Journal of investigative dermatology. 133(1):181-190.
    Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, Bartel DP. 2010. Expanding the microrna targeting code: Functional sites with centered pairing. Mol Cell. 38(6):789-802.
    Shin K-H, Kim RH. 2018. An updated review of oral cancer stem cells and their stemness regulation. Crit Rev Oncogen. 23(3-4):189-200.
    Singh A, Settleman J. 2010. Emt, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29(34):4741-4751.
    Soung YH, Gil HJ, Clifford JL, Chung J. 2011. Role of α6β4 integrin in cell motility, invasion and metastasis of mammary tumors. Curr Protein Pept Sci. 12(1):23-29.
    Stabile LP, Egloff AM, Gibson MK, Gooding WE, Ohr J, Zhou P, Rothenberger NJ, Wang L, Geiger JL, Flaherty JT et al. 2017. Il6 is associated with response to dasatinib and cetuximab: Phase ii clinical trial with mechanistic correlatives in cetuximab-resistant head and neck cancer. Oral Oncol. 69:38-45.
    Stewart RL, O'Connor KL. 2015. Clinical significance of the integrin α6β4 in human malignancies. Lab Invest. 95(9):976-986.
    Suenaga N, Kuramitsu M, Komure K, Kanemaru A, Takano K, Ozeki K, Nishimura Y, Yoshida R, Nakayama H, Shinriki S et al. 2019. Loss of tumor suppressor cyld expression triggers cisplatin resistance in oral squamous cell carcinoma. Int J Mol Sci. 20(20):5194.
    Suryawanshi A, Tadagavadi RK, Swafford D, Manicassamy S. 2016. Modulation of inflammatory responses by wnt/β-catenin signaling in dendritic cells: A novel immunotherapy target for autoimmunity and cancer. Front Immunol. 7:460.
    Takahashi H, Ishii H, Nishida N, Takemasa I, Mizushima T, Ikeda M, Yokobori T, Mimori K, Yamamoto H, Sekimoto M et al. 2011. Significance of lgr5(+ve) cancer stem cells in the colon and rectum. Ann Surg Oncol. 18(4):1166-1174.
    Toyoshima T, Vairaktaris E, Nkenke E, Schlegel KA, Neukam FW, Ries J. 2008. Cytokeratin 17 mrna expression has potential for diagnostic marker of oral squamous cell carcinoma. J Cancer Res Clin Oncol. 134(4):515-521.
    Tsai F-J, Lai M-T, Cheng J, Chao SC-C, Korla PK, Chen H-J, Lin C-M, Tsai M-H, Hua C-H, Jan C-I et al. 2019. Novel k6-k14 keratin fusion enhances cancer stemness and aggressiveness in oral squamous cell carcinoma. Oncogene. 38(26):5113-5126.
    Tung SL, Huang WC, Hsu FC, Yang ZP, Jang TH, Chang JW, Chuang CM, Lai CR, Wang LH. 2017. Mirna-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the areg-egfr-erk pathway. Oncogenesis. 6:e326.
    Wang C, Liu XQ, Hou JS, Wang JN, Huang HZ. 2016. Molecular mechanisms of chemoresistance in oral cancer. Chin J Dent Res. 19(1):25-33.
    Wang M, Cai W-R, Meng R, Chi J-R, Li Y-R, Chen A-X, Yu Y, Cao X-C. 2018. Mir-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin. Biochem Biophys Res Commun. 501(1):48-54.
    Wang SS, Jiang J, Liang XH, Tang YL. 2015. Links between cancer stem cells and epithelial-mesenchymal transition. Onco Targets Ther. 8:2973-2980.
    Wang X, Zhou X, Zeng F, Wu X, Li H. 2020. Mir-485-5p inhibits the progression of breast cancer cells by negatively regulating muc1. Breast Cancer. 27(4):765-775.
    Wang Z, Yang M-Q, Lei L, Fei L-R, Zheng Y-W, Huang W-J, Li Z-H, Liu C-C, Xu H-T. 2019. Overexpression of krt17 promotes proliferation and invasion of non-small cell lung cancer and indicates poor prognosis. Cancer Manag Res. 11:7485-7497.
    Warrier S, Bhuvanalakshmi G, Arfuso F, Rajan G, Millward M, Dharmarajan A. 2014. Cancer stem-like cells from head and neck cancers are chemosensitized by the wnt antagonist, sfrp4, by inducing apoptosis, decreasing stemness, drug resistance and epithelial to mesenchymal transition. Cancer Gene Ther. 21(9):381-388.
    Weng Y, Xiao H, Zhang J, Liang X-J, Huang Y. 2019. Rnai therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 37(5):801-825.
    Wu L, Han L, Zhou C, Wei W, Chen X, Yi H, Wu X, Bai X, Guo S, Yu Y et al. 2017. Tgf-β1-induced ck17 enhances cancer stem cell-like properties rather than emt in promoting cervical cancer metastasis via the erk1/2-mzf1 signaling pathway. FEBS J. 284(18):3000-3017.
    Yang Y, Liu J, Qian X, Li Y, Wang Y, Xu X. 2020a. Mir-485-5p improves the progression of ovarian cancer by targeting src in vitro and in vivo. Neoplasma. 67(5):1022-1031.
    Yang Z, Liao J, Carter-Cooper BA, Lapidus RG, Cullen KJ, Dan H. 2019. Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the src/ets-1 signaling pathway. BMC Cancer. 19(1):485-485.
    Yang Z, Liao J, Cullen KJ, Dan H. 2020b. Inhibition of ikkβ/nf-κb signaling pathway to improve dasatinib efficacy in suppression of cisplatin-resistant head and neck squamous cell carcinoma. Cell Death Discov. 6:36.
    Yoshida K, Yamamoto Y, Ochiya T. 2021. Mirna signaling networks in cancer stem cells. Regen Ther. 17:1-7.
    Zhang S, Yu D. 2012. Targeting src family kinases in anti-cancer therapies: Turning promise into triumph. Trends Pharmacol Sci. 33(3):122-128.
    Zhang X, Yin M, Zhang LJ. 2019. Keratin 6, 16 and 17-critical barrier alarmin molecules in skin wounds and psoriasis. Cells. 8(8).
    Zhou X, Zhan Z, Tang C, Li J, Zheng X, Zhu S, Qi J. 2020. Silencing celsr2 inhibits the proliferation and migration of schwann cells through suppressing the wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 533(4):623-630

    QR CODE