研究生: |
張文淵 Wen-Yuan Chang |
---|---|
論文名稱: |
以LaNiO3底電極開發(Pr,Ca)MnO3非揮發性電阻記憶體特性之研究 Characteristics of (Pr,Ca)MnO3 thin films on LaNiO3-electrodized Si substrate for nonvolatile resistance random access memory application |
指導教授: |
吳泰伯
Tai-Bor Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 電阻記憶體 、鐠鈣錳氧 、電阻轉換效應 、鎳酸鑭 、非揮發性記憶體 |
外文關鍵詞: | RRAM, PCMO, resistance switching effect, LNO, PrCaMnO3, LaNiO3 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式非揮發性記憶體(RRAM)深具競爭潛力,具備操作電壓低、快速操作時間、結構簡單化、可多位元記憶、耐久性佳、記憶元件面積縮小及非破壞性讀取等優勢,並且擁有低成本的競爭力,發展潛力深受市場矚目。雖然擁有非常優異的特性,但是至今電阻轉換效應的工作機制尚未被明確了解,對於材料特性的掌握度不足,因而材料的研究將扮演關鍵的角色。
本論文的方向主要集中在探討電極材料與鐠鈣錳氧(PCMO)薄膜特性對電阻轉換效應的影響性。藉由氧化物電極鎳酸鑭(LaNiO3)來降低PCMO薄膜的結晶溫度,並控制其具強烈(001)優選指向。透過PCMO薄膜鍍製於Pt/Ti/SiO2/Si及LNO/Pt/Ti/SiO2/Si兩種底電極基板上,並選用LNO或Pt兩種上電極材料相互對照,試圖了解電阻轉換效應(resistance-switching effect)的工作機制來源。研究發現電阻轉換效應的發生,推測與PCMO薄膜本身結晶特性及電阻層與電極間界面匹配性有關,其中以LNO/PCMO/LNO結構表現最為優異,高低電阻值的變化可高達100倍。並成功以導電性原子力顯微鏡觀察電阻轉換效應,利用導電性探針施加電壓在奈米區域寫入訊號,確實可以觀察到非揮發性記憶特性。
1.市場分析公司BBC(Business Communications Co.)2005研究報告.
2. 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,”國研科技創刊號
3.Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi,“Status and Outlook of Emerging Nonvolatile Memory Techologies,” IEEE (2004).
4. 宇量,“明日之星快閃IC「RRAM」的發展動向,” 電子設計資源網
5.W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, “Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM),” in IEDM Tech. Dig., 193, (2002).
6. 劉志益、曾俊元, “電阻式非揮發性記憶體之近期發展”.
7. A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Nature (London) 388, 50 (1997)
8. Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
9. R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and C. Dehm, “Organic Materials for High-Density Non-Volatile Memory Application,” in IEDM Tech. Dig., 259, (2003).
10. S.Q. Liu, N. J.Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett. 76,2749, (2000).
11.A. Sawa, T. Fujii, M. Kawawaki, and Y. Tokura“Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 85,4073, (2004).
12. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag/ Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 83,957(2003).
13. X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, “Direct resistance profile for an electrical pulse induced resistance change device,” Appl. Phys. Lett. 87, 233506, (2005).
14. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85,5655, (2004).
15. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, J.C. Park, S.O. Park, H. S. Kim, I.K. Yoo, U.I. Chung, and J.T. Moon, “Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses,” in IEDM Tech. Dig., (2004).
16. A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett. 77, 139, (2000).
17. C. Rossel, G. I. Meijer, D. Bre´maud, and D. Widmer, “Electrical current distribution across a metal–insulator–metal structure during bistable switching,” J. Appl. Phys. 90, 2892, (2001).
18. Liping Ma, Jie Liu, Seungmoon Pyo, and Yang Yang, “Organic bistable light-emitting devices,” Appl. Phys. Lett. 80, 362, (2002)
19. L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett. 80, 2997, (2002).
20. D. Tondelier, K. Lmimouni, D. Vuillaume, C. Fery and G. Haas, “Metal/organic/metal bistable memory devices” Appl. Phys. Lett. 85, 5763, (2004).
21.A. Abrikosov, Fundamentals of The Theory of Metals (North-Holland Amsterdam, 1988)
22.Yoshinori Tokura, “Colossal Magnetoresistive Oxide,” p1, Gordon and breach science publishers.
23.吳文斌、黃迪靖, “強電子關聯材料的軌域物理” 國家同步輻射研究中心簡訊 (2004)
24. Yoshinori Tokura, “Colossal Magnetoresistive Oxide,” p3, Gordon and breach science publishers.
25.C. Zener, “Interaction between the d shells in transition metals,” Phys. Rev. 81, 440, (1951)
26.S. Mori, C. H. Chen, and S. W. Cheong, “Pairing of charge-ordered stripes in (La,Ca)MnO3,” Nature(Londom) 392, 473, (1998).
27. J. M. Tranquada, B.J. Sternlieb, .D. Axe,Y. Nakamura and S. Uchida,“Evidence for stripe correlations of spins and holes in copper oxide superconductors,” Nature(London) 375, 561, (1995).
28.H. T. Jeng, G. Y. Guo, and D. J. Huang, “Charge-Orbital Ordering and Verwey Transition in Magnetite,” Phys. Rev. Lett. 93, 156403, (2004).
29.鄭弘泰, “第一原理理論計算作為科學發現的工具:磁鐵礦(magnetite)之電荷-軌道秩序(charge-orbital ordering)和Verwey 相變” 物理雙月刊, 二十七卷四期, (2005).
30. M. J. Rozenberg, I. H. Inoue, and M. J. Sa nchez, “Nonvolatile Memory with Multilevel Switching: A Basic Model,” Phys. Rev. Lett. 92, 178302, (2004).
31. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface”Appl. Phys. Lett. 83,957(2003).
32. S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen and A. J. Jacobson, “Field-induced resistive switching in metal-oxide interfaces,” Appl. Phys. Lett. 85, 317, (2004).
33. M. J. Rozenberg, I. H. Inoue, and M. J. Sa nchez, “Strong electron correlation effects in nonvolatile electronic memory devices ,” Appl. Phys. Lett. 88, 033510, (2006).