簡易檢索 / 詳目顯示

研究生: 林勝賢
Lin, Sheng-Hsien
論文名稱: 酵素型生物燃料電池奈米質傳模擬與實作實驗量測
Nanoscale Mass Transfer Simulation and Fabrication Experiment of an Enzymatic Biofuel Cell
指導教授: 洪哲文
Hong, Che-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 73
中文關鍵詞: 酵素型生物燃料電池分子動力模擬羥離子
外文關鍵詞: Enzymatic Biofuel Cell, Molecular Dynamics Simulation, Hydronium Ion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對酵素型生物燃料電池(Enzymatic Biofuel Cell)在微觀尺度下進行奈米流力質傳分析,藉由葡萄糖溶液與羥離子(H3O+)的幾何結構建立,並配合分子動力模擬軟體、巨觀質傳模擬分析與實作手段,實際製作一酵素型生物燃料電池,以實驗驗證相關理論分析模擬,進而探討酵素型生物燃料電池的性能特性。
    生物燃料電池通常指的是將生質燃料像是酒精、醣類或是有機化合物轉化成電能的電化學裝置。其中酵素型生物燃料電池主要使用是酵素當作觸媒而非白金之類的貴重金屬,例如本論文中電池實驗使用的葡萄糖氧化酵素(Glucose Oxidase)和漆酵素(Laccase),其利用酵素的催化特性與專一性將葡萄糖和氧氣作氧化還原的電化學反應以產生電能。其中陽極在氧化還原反應過程中產生質子並藉由擴散原理傳遞至陰極,所以我們知道酵素型生物燃料電池藉由電化學反應所產生之功率乃與質子於電解質內的移動性能有著密不可分的關係,因此本論文藉由相關模擬分析與電池實作實驗來研究相關物理性質所造成的影響及趨勢,以瞭解酵素燃料電池的性質與反應特性。
    生物燃料電池的應用範圍相當廣泛,像是生物產氫、鹽沼沉積物發電和生物感測器…等領域皆有應用,而酵素型生物燃料電池因為其組成之元件主要是生物元件而且所輸出之功率較低,所以其適用於植入人體(或動物體)內作為人體醫療儀器以及生物感測的電源供應來源,像是生醫發電機、血糖發電與生物感測器等應用。


    摘要 I 致謝 II 目錄 III 表目錄 V 圖目錄 VI 參數定義 VIII 第一章 緒論 1 1.1 前言 1 1.2 生物燃料電池簡介 3 1.3 文獻回顧 5 1.4 研究目的與方法 10 第二章 酵素型生物燃料電池與分子動力學理論 11 2.1 酵素型生物燃料電池 11 2.2 電子傳遞步驟 16 2.3 分子動力學模擬 18 2.4 勢能函數 19 2.4.1. 凡得瓦力 21 2.4.2. 庫倫靜電力 22 2.4.3. 鍵結 23 2.4.4. 鍵結夾角 24 2.4.5. 雙面角 24 2.4.6. 倒轉角 25 2.5 週期性邊界條件 25 2.6 巨觀質傳數學模式 27 第三章 分子模型建構與電池實驗架構 30 3.1 模擬流程 30 3.2 模擬模型建立 31 3.3 分子動力學模擬 37 3.4 平均平方位移 38 3.5 徑向分佈函數 39 3.6 擴散係數 40 3.7 巨觀質傳模型 41 3.8 電池實驗量測 43 第四章 結果與討論 48 4.1 模擬系統狀態 48 4.2 徑向分佈函數 51 4.3 平均平方位移 55 4.4 擴散係數 59 4.5 巨觀質傳模擬結果 61 4.6 酵素燃料電池實驗實作結果 63 第五章 結論與未來建議 68 5.1 結論 68 5.2 未來建議 69 參考文獻 71

    [1] G. T. R. Palmore, Whitesides, “Microbial and enzymatic biofuel cells”, Himmel, E. (Ed.), Enzymatic Conversion of Biomass for Fuels, Production, Journal of American Chemical Society, Vol. 566, pp. 271–290, 1994.
    [2] A. T. Yahiro, S. M. Lee and D. O. Kimble, “Bioelectrochemistry I. enzyme utilizing bio-fuel cell studies”, Journal of Biochimica et biophysica acta, Vol. 88, pp. 375–383, 1964.
    [3] B. Persson, L. Gorton, G. Jahansson, et al., “Biofuel anode based on D-glucose dehydrogenase, nicotinamide adenine dinuclecotide and a modified electrode”, Enzyme Microb. Technol., Vol. 7, pp.549-552, 1985.
    [4] E. Katz, I. Willner and A. B. Kotlyar, “A non-compartmentalized glucose|O2 biofuel cell by bioengineered electrode surfaces”, Journal of Electroanalytical Chemistry, Vol. 479, pp. 64–68, 1999.
    [5] I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz and G. Tao, “Electrical Wiring of Glucose Oxidase by Reconstitution of FAD-Modified Monolayers Assembled onto Au-Electrodes”, Journal of American Chemical Society, Vol. 118, pp. 10321–10322, 1996.
    [6] T. Chen, S. C. Barton, G. Binyamin, Z. Gao, Y. Zhang, H. H. Kim and A. Heller, “A Miniature Biofuel Cell”, Journal of American Chemical Society, Vol. 123, pp. 8630–8631, 2001.
    [7] A. Heller, “Miniature Biofuel Cell”, Journal of Physical Chemistry Chemical Physical, Vol. 6, pp. 209–216, 2004.
    [8] A. Habrioux, G. Merle, K. Servat, K. B. Kokoh, C. Innocent, M. Cretin and S. Tingry, “Concentric glucose/O2 biofuel cell”, Journal of Electroanalytical Chemistry, Vol. 622, pp. 97–102, 2008.
    [9] N. Mano, F. Mao and A. Heller, “A Miniature Biofuel Cell Operating in A Physiological Buffer”, Journal of American Chemical Society, Vol. 124, pp. 12962–12963, 2002.
    [10] S. C. Barton, M. Pickard, A. Heller, “Electroreduction of O2 to water at 0.6 V (SHE) at pH 7 on the ‘wired’ Pleurotus ostreatus laccase cathode”, Biosensors and Bioelectronics, Vol. 17, pp. 1071–1074, 2002.
    [11] R. F. S., News Focus in Science, Vol. 296, pp. 1223, 2002.
    [12] N. Mano, F. Mao and A. Heller, “Characteristic of a Miniature Compartment-less Glucose-O2 Biofuel Cell and its Operation in a Living Plant”, Journal of the American Chemical Society, Vol. 125, pp. 6588-6594, 2003.
    [13] N. Mano, H. H. Kim, Y. Zhang, and A. Heller, ”An Oxygen Cathode Operating in a Physiological Solution”, Journal of the American Chemical Society, Vol. 124, pp. 6480-6484, 2003.
    [14] M. Eigen, “Proton Transfer, Acid-Base Caltalysis and Enzymatic Hydrolysis, Part I: ELEMENTARY PROCESS”, Angewandte Chemie International Edition in English, Vol. 3, pp. 1–19, 1964.
    [15] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letter , Vol. 244, pp. 456–462, 1995.
    [16] S. J. Angyal, “The Composition and Conformation of Sugars in Solution”, Angewandte Chemie International Edition in English, Vol. 8, pp. 157–166, 1969.
    [17] G. Tayhas R. Palmore and H. H. Kim, “Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell”, Journal of Electroanalytical Chemistry, Vol. 464, pp. 110–117, 1999.
    [18] W. Vielstich, A. Lamm and H. Gasteiger, “Handbook of Fuel Cells: Fundamentals, Technology and Applications”, Chapter 21, Wiley Europe, 2003.
    [19] R. A. Bullen, T. C. Arnot, J. B. Lakeman and F. C. Walsh, “Biofuel cells and their development”, Biosensors and Bioelectronics, Vol. 21, pp.2015–2045, 2006.
    [20] U. C. Singh and P. A. Kollamn, “A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl+Cl− exchange reaction and gas phase protonation of polyethers”, Journal of Computational Chemistry, 1986
    [21] S. L. Mayo, B. D. Olafson and W. D. Goddard, “DREIDING: A Generic Force FIELD for Molecular Simulations”, Journal of Physics Chemistry, Vol. 94, pp. 8897-8909,1990.
    [22] A. Burykin and A. Warshel, “What Really Prevents Proton Transport through Aquaporin? Charge Self-Energy versus Proton Wire Proposals”, Journal of Biophysical, Vol. 7, pp. 718–730, 1986.
    [23] S. C. Barton, J. Gallaway and P. Atanassov, “Enzymatic Biofuel Cells for Implantable and Microscale Devices”, Journal of American Chemical Society, 2004
    [24] E. Katz, A. F. Buckmann and I. Willner, “Self-Powered Enzyme-Based Biosensors”, Journal of American Chemical Society, Vol. 123, pp.10752-10753, 2001
    [25] H. J. Hecht, H. M. Kalisz and R. D. Schmid, et al., “Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution”, Journal of Molecular Biology, Vol. 229, pp.153-172, 1993
    [26] K. Piontek, M. Antorini and T. Choinowski, “Crystal Structure of a Laccase from the Fungus Trametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers”, Journal of Biological Chemistry, Vol. 277, pp.37663-37669, 2002
    [27] G. P. MIRJANA, H. H. KIM, and N. G. BUTLIN, et al., “Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris”, Journal of American Society for Microbiology, Vol. 65, pp.5515-5521, 1999
    [28] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Properties. IV. The Equation of Hydrodynamics”, Journal of Chemical Physics, Vol. 18, pp.817, 1950
    [29] B.J. Alder and T.E Wainwright, “Phase transition for A Hard Sphere System”, Journal of Chemical Physics, Vol. 27, pp.1208-1209, 1957

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE