簡易檢索 / 詳目顯示

研究生: 林瑞霖
Ruei-Ling Lin
論文名稱: 高性能、高密度快閃記憶體之研究
Study of High-Performance and High-Density Flash Memory
指導教授: 徐清祥
Charles Ching-Hsiang Hsu
金雅琴
Ya-Chin King
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 286
中文關鍵詞: 快閃記憶體多頁平行編碼擬動態儲存多值邏輯自我收斂源極控制多值編碼汲極控制多值編碼
外文關鍵詞: Flash Memory, Multiple Page Parallel Program, Dynamic Storage, Multilevel Storage, Self-convergent, Source Controlled Multilevel Program, Drain Controlled Multilevel Program
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 快閃式非揮發可程式抹除記憶體已廣泛地應用在可攜式電子產品,諸如數位相機、手機、數位播音機。快閃記憶體隨著應用層面的擴大,市場供不應求。 記憶體產品定位在提供高速編碼及高密度快閃記憶體。本文之第一部份提出在新動態頁暫存架構下的『新最高效能多頁並行編碼技術』,靜態頁暫存器以新的動態頁暫存器取代,以達成最高速編碼的優越特性,該技術之各種關鍵分散式局部暫存元件設計為本文討論的重點。『新最高效能多頁並行編碼技術』可同時處理多頁編碼,免除靜態頁暫存器有限容量所導致編碼速度無法提升的窘境。因此,分散式局部暫存技術(即嵌入動態存取記憶體於快閃記憶陣列之中),取代陣列外暫存器的角色,降低資料停留在陣列外暫存器的時間,進而提升資料寫入速度。 依快閃記憶體陣列結構分類,本文提出:(a) NAND動態記憶胞局部暫存、(b) DINOR動態位元局部暫存、(c) AND動態區段局部暫存和增強位元式動態區段局部暫存,以及電容板增強位元式區段局部暫存等新關鍵元件技術。局部暫存元件之設計影響快閃記憶體編碼特性,必須遵循新的設計原則才能有效率的編碼,同時,配合新的兩段式偵測恢復法,編碼中的臨界電壓可被有效的控制,暫存信號也可藉此恢復。本文所提技術針對大量資料湧入特別有效,是未來不可或缺的高速編碼技術。
    本文第二部分討論多值邏輯儲存技術,多值邏輯儲存可有效增加容量及降低單位成本,不過如何精準地控制存放電荷量卻考驗控制線路的設計。本文提出用於N型通道記憶體的『新源極控制自我校正法』及用於P型通道記憶體的『新自我調整動態源極法』來達成多值邏輯儲存。新技術可因準確地控制儲存電荷以提升記憶體整體的耐久度,降低編碼功率消耗,減緩干擾效應,是未來可攜式低功率需求應用中不可或缺的多值編碼技術。


    Flash EEPROM has been widely used in mobile applications, such as digital camera, cellular phones and music players. The market is rapidly growing along with the new application fields. The major developing trends include fast writing throughput and high-density storage. In the first part of this dissertation, a novel power limited multiple page parallel programming (MPP) technique in the new dynamic buffer architecture is proposed for enhanced programming. The novel power limited MPP utilizes dynamic buffers for continuous loading of programming data and employs dynamic local latching for storing signals. This innovation overcomes the conventional writing-speed limitation of static buffers. The proposed local latching techniques include (a) NAND Dynamic Cell Latching (DCL), (b) DINOR Dynamic Bit-Line Latching (DBL), (c) AND Dynamic Sector Latching (DSL), Boosting Bitline Dynamic Sector Latching (BB-DSL), and Capacitor-Plate Boosting Bitline Dynamic Sector Latching (CBB-DSL). We found that latching devices strongly affect the programming characteristics of Flash memory. A novel two-step sense and refresh algorithm is proposed to control threshold voltages in the dynamic buffer architecture. This algorithm features reduced dynamic buffer sizes, enhanced programming, and capability of controlling threshold voltages. The new approach greatly improves the programming throughput, which is very suitable for future high-speed Flash memory applications.
    The second part of this dissertation discusses two novel multi-level programming techniques, the Source-Controlled Self-Verified (SCSV) method for N-channel EEPROM and the Self-Adjusted Dynamic Source (SADS) method for P-channel Flash memory. The SCSV method achieves nondegraded multilevels in the proposed high-impedance loaded configuration, extending endurance cycles by the self-verified mechanism. The SADS method introduces a multilevel P-channel hot carrier programming with the new drain-controlled source voltage in the newly developed constant current driven source configuration. Fast and low power multilevel programming is successfully achieved. The two techniques provide promising solutions for future reliable high-density applications.

    Abstract ii Acknowledgement iv List of Contents v List of Figures vii List of Tables xvi Chapter One Introduction 1 1.1 Introduction to Flash memory 1 1.2 Flash memory applications and markets 1 1.3 Development trends 2 1.4 Issues and Challenges 2 1.5 Objectives 3 1.6 Organizations 3 Chapter Two Flash Memory Review 6 2.1 Functional Block 6 2.2 High-Speed Programming Techniques 7 2.2.1 Buffer Interfacing 7 2.2.2 Page Programming 7 2.2.3 Simultaneous Read/Write 8 2.2.4 Dynamic Bitline Latching 9 2.3 High-Density Techniques --- Multilevel Storage 10 2.3.1 Multilevel Algorithms 10 Chapter Three Experimental Preparation 25 3.1 Test Structures and Fabrication 25 3.1.1 N-channel memory 25 3.1.2 P-channel memory 27 3.2 Characterization Techniques 45 3.2.1 Configuration of Measurement Systems 45 3.2.2 Parameter Extraction 45 Chapter Four High-Speed Programming 48 4.1 Introduction 48 4.1.1 Multiple Page Parallel (MPP) Programming 49 4.1.2 Latching Element 51 4.2 Structural Dynamic Latching 59 4.2.1 Dynamic Cell Latching (DCL) 59 4.2.2 Dynamic Bit-Line Latching (DBL) 99 4.2.3 Dynamic Sector Latching (DSL) 139 4.3 New Two-Step Sense-and-Refresh Algorithm 178 4.3.1 Introduction 178 4.3.2 New Two-Step Sense and Refresh Algorithm 178 4.4 Summary on High-Speed Programming 184 Chapter Five High-Density Flash Memory 185 5.1 Source Controlled Self-Verified (SCSV) Multilevel Programming 185 5.1.1 Introduction 185 5.1.2 Structure Requirement 185 5.1.3 New SCSV Programming Method 186 5.1.4 Programming Characteristics 189 5.1.5 Retention and Disturbance Characteristics 191 5.1.6 Design and Implementation 192 5.1.7 Summary on SCSV Scheme 193 5.2 Self-Adjusted Dynamic Source (SADS) Multi-level Programming 207 5.2.1 Introduction 207 5.2.2 Structure Requirement 207 5.2.3 SADS Operational Principle 208 5.2.4 Modeling of SADS Operation 210 5.2.5 Multilevel Programming 212 5.2.6 Disturbance 214 5.2.7 Summary on SADS Scheme 215 Chapter Six Conclusions 228 Appendix A Review of Flash Memory Device 230 A.1 Flash Memory Family 230 A.2 Capacitor Coupling Network 231 A.3 Flash Memory Current Model 232 A.4 Carrier Injection Mechanisms 235 A.4.1 Channel Hot Electron (CHE) Injection 235 A.4.2 Channel Hole Induced Hot Electron Injection 236 A.4.3 Band-to-Band Hot Hole (BBHH) Injection 237 A.4.4 Band-to-Band Hot Electron (BBHE) Injection 238 A.4.5 Fowler-Nordheim (FN) Tunneling 239 References 250

    [1.1] Tong-Chern Ong, Ping-Keung Ko and Chengming Hu, “Hot-carrier current modeling and device degradation in surface channel P-MOSFET’s,” IEEE Transaction on Electron Devices, vol. 37, no.7, 1990.
    [1.2] J. Maserjian and N. Zamani, “Observation of positively charged state generation near the Si/SiO2 interface during Fouler-Nordheim tunneling,” Journal Vacumn Science Technology, vol. 20, pp. 743-746, 1982.
    [1.3] P. Cappelletti et al.,”Failure mechanisms of Flash cell in program/erase cycling,” IEEE International Electron Device Meeting, pp. 291-294, 1994.
    [1.4] C.-Y. Hu, D. L. Kencke, and S. K. Banerjee, “Substrate current induced hot electron (SCIHE) injection: a new convergent scheme for Flash memory,” IEEE International Electron Device Meeting, pp. 283-286, 1995.
    [1.5] David Esseni and Bruno Ricco, “Flexible hot electron programming of Flash memories,” IEEE International Electron Device Meeting, pp. 991-994, 1998.
    [1.6] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka, and H. Migoshi, “Novel electron injection method using band-to-band tunneling induced hot electrons (BBHE) for Flash memory with a P-channel cell,” IEEE International Electron Device Meeting, pp. 279-282, 1995.
    [1.7] Kuo-Feng You and Ching-Yuan Wu, “A new quoai-2D model for hot-carrier band-to-band tunneling current,” IEEE Transaction on Electron Devices, vol. 46, no. 6, pp. 1174-1179, 1999.
    [1.8] J.D. Bude, A Frommer, M.R. Pinto, G.R.Weber,”EEPROM/Flash sub-3.0V drain-source biased hot carrier writing,” IEEE International Electron Device Meeting, pp. 989-992,1995.
    [1.9] Chun Chen, Zhi-Zheng Liu, and T.-P. Ma, “Analysis of enhanced hot-carrier effects in scaled Flash memory devices,” IEEE Transaction on Electron Devices, vol. 45, no. 7, 1524-1530, 1998.
    [1.10] Steven S. Chung, Cherng-Ming Yih, Shui-Ming, and Mong-Song Liang, “A new technique for hot carrier reliability evaluations of Flash memory cell after long-term program/erase cycles,” IEEE Transaction on Electron Devices, vol. 46, no. 9, pp. 1883-1889, 1999.
    [1.11] T.C. Ong, A. Faxio, N. Mielke, S. Pan, N. Righos, G. Atwood, and S. Lai, “Erratic erase in ETOX Flash memory array,” IEEE International Electron Device Meeting, pp.83-86, 1992.
    [1.12] S. Haddad, C. Chang, B. Swaminathan, and J. Lien, “Degradations due to hole trapping in Flash memory cells,” IEEE Electron Device Letter, vol. 10, no. 3, pp. 117-119, 1989.
    [1.13] Sameer Haddad, Chi Chang, Arthur Wang, J. Bustillo, J. Lien, T. Montalvo, and M. Van Buskirk,”An investigation of erase-mode dependent hole tranpping in Flash memory cell,” IEEE Electron Device Letter, vol. 11, no. 11, pp. 514-516, 1990.
    [1.14] E. Rosenbaum and L.F. register,”Mechanism of stress-induced leakage current in MOS capacitors,” IEEE Transaction on Electron Devices, vol. 44, pp. 317-323, 1997.
    [1.15] D.J. Dumin and J. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides,” IEEE Transaction on Electron Devices, vol. 40, pp. 986-993, 1993.
    [1.16] R. Rofan and C. Hu, “Stress-induced oxide leakage,” IEEE Electron Device Letter, vol. 12, pp. 632-634, 1991.
    [1.17] M. Kato, N. Miyamoto, H. Kume, A. Satoh, M. Ushiyama and K. Kimura, “Read-disturb degradation mechanism due to electron trapping in the tunnel oxide for low-voltage Flash memories,” IEEE International Electron Device Meeting, pp. 45-48, 1994.
    [1.18] S. Aritome, R. Shirota, G. J. Hemink, T. Endoh, and F. Masuoka, “Reliability issues of Flash memory cells,” Proc. IEEE, vol. 81, no. 5, pp. 776-788, May, 1993.
    [1.19] J. DeBlauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel, L. Haspelslagh, L. Deferm, G. Groussel, L. Haspeslagh, L. Deferm, G. Groeseneken, and H.E. Maes, “A new quantitative model to predict SILC-related disturb characteristics in Flash EEPROM devices,” IEEE International Electron Device Meeting, pp. 343-346, 1996.
    [1.20] Nian-Kai Xous, Tahui Wang, Chih-Chich Yeh, Ching-Wei Tsai, and Chimmon Huang, “A comparative study of SILC transient characteristics and mechanisms in FN stressed and hot hole stressed tunnel oxides,” International Reliability Physics Symposium, pp. 405-409, 1999.
    [1.21] Shiro Kamohara, Donggun Park, Chenming Hu, “Deep trap SILC (stress induced leakage current) model for nominal and weak oxides,” International Reliability Physics Symposium, pp. 57-61, 1998.
    [1.22] Chun Chen and Tso-Ping Ma, “Direct lateral profiling of hot-carrier-induced oxide charge and interface traps in thin gate MOSFET’s,” IEEE Transaction on Electron Devices, vol. 45, no. 2, pp. 512-520, 1998.
    [1.23] Albert T. Wu, V. Murali, Jaim Nulman, Baylaor Triplett, D.B. Fraser, M. Garner, “Gate bias polarity dependence of charge tranpping and time-dependent dielectric breakdown in Nitrided and reoxidized nitrided oxides,” IEEE Electron Device Letter, vol. 10, no. 10, pp. 443-445, 1989.
    [1.24] G. Samachisa et al.,”A 128K Flash EEPROM using double polysilicon technology,” IEEE Journal of Solid State Circuits, vol. 22, pp. 676-682, Oct. 1987.
    [1.25] Imamiya, K. et al.,”A 35ns-cycle time 3.3.V only 32Mb NAND Flash EEPROM,” International Solid State Circuit Conference, pp. 130-131, 1995.
    [1.26] Vergil Niles Kynett, Alan Baker, Mick Lee Fandrich, George P. Hoekstra, Owen Jungroth, Jerry A. Kreifels, Steven wells, and Mark D. Winston, “An in-system reprogrammable 32Kx8 CMOS Flash memory,” IEEE Journal of Solid State Circuits, vol. 23,
    [1.27] Jin-Ki Kim et al., “A 120mm2 64Mb NAND Flash memory achieving 180ns/byte effective program speed,” in IEEE Symposium on VLSI Circuits, pp. 168, 1996.
    [1.28] T. Tanaka, M. Momodoimi, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, and F. Masuolka, “ A 4-Mbit NAND EEPROM with tight programmed Vt distribution,” IEEE Symposium on VLSI Circuits, pp. 105-106, 1990.
    [1.29] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, “A quick intelligent programming architecture and a shielded bitline sensing method for 3V only NAND Flash memory, “ IEEE Journal of Solid State Circuits, vol.29, pp. 1366-1373, Nov. 1994.
    [1.30] Masaki Momodomi, Yoshihisa Iwata, Tomoharu Tanaka, Yasuo Itoh, Riichiro Shirota, and Fujio Masuoka, “A high-density NAND EEPROM with block-page programming for microcomputer applications,” Custom Intergraded Circuit Conference, pp. 10.1.1-10.1.4, 1989.
    [1.31] K.Yoshikawa, S.Mori, E.Sakagami, N.Arai, Y.Kaneko and Y.Ohshima, “Flash EEPROM cell scaling based on tunnel oxide thinning limitations,“ IEEE Symposium on VLSI Technology, p.79-p.80, 1991.
    [1.32] K.Shimizu, K.Narita, H.Watanabe, E.Kamiya, Y.Takeuchi, T.Yaegashi, S.Aritome and T.Watanabe, “A novel high-density 5F2 NAND STI cell technology suitable for 256Mbit and 1Gbit Flash memories, “ in IEEE International Electron Device Meeting, p.271-p.274, 1997
    [1.33] J.D.Bude, M.Mastrapasqua, M.R.Pinto, R.W.Gregor, P.J.Kelley, R.A.Kohler, C.W.Leung, Y.Ma, R.J.McPartland, P.K.Roy and R.Singh, “Secondary electron Flash - a high performance low power Flash technology for 0.35 mm and below,” IEEE International Electron Device Meeting, p.279-p.282, 1997
    [1.34] P. Candelier, F. Mondon, B. Guillaumot, G. Reimbold and F. Martin,” Simplified 0.35um Flash EEPROM process using high-temperature oxide (HTO) deposited by LPCVD as interpoly dielectrics and peripheral transistors gate oxide,” IEEE Electron Device Letter, vol.-18, no.7, p.306-p.308,1997
    [1.35] T.Kobayashi, N.Matsuzaki, A.Sato, A.Katayama, H.Kurata, A.Miura, T.Mine, Y.Goto, et al. “A 0.24um2 cell process with 0.18um width isolation and 3-D interpoly dielectric films for 1Gb Flash memories,” in IEEE International Electron Device Meeting, p.275-p.278, 1997
    [1.36] “Self-aligned source process and apparatus,” US Patent, no.5103274, 1991
    [1.37] M.Kato, T.Adachi, T.Tanaka, A.Sato, T.Kobayashi, Y.Sudo, et. al., “A 0.4 um self-aligned contactless memory cell technology suitable for 256M bit Flash memory,” IEEE International Electron Device Meeting, pp.921-923, 1994
    [1.38] K. Shimizu, K. Narita, H. Watanable, E. Kamiya, Y. Takeuchi, T. Yaegashi, S. Aritome, and T. Watanabe, “A novel high-density 5F2 NAND STI cell technology suitable for 256Mbit and 1Git Flash memories,” IEEE International Electron Device Meeting, pp. 271-274, 1997.
    [1.39] S. Aritome, S. Satoh, T. Maruyama, H. Watanabe, S. Shuto, G. J. Hemink, R. Shirota, S. Watanabe, and F. Masuoka, “A 0.67□m2 self-aligned shallow trench isolation cell (SA-STI cell) for 3V only 256Mbit NAND EEPROM’s,” IEEE International Electron Device Meeting, pp. 61-64, 1994.
    [1.40] M. Kato et al.,”A 0.4mm2 self-aligned contactless memory cell technology suitable for 256Mbit Flash memories,” IEEE International Electron Device Meeting, pp. 921-924, 1994.
    [1.41] H. Kume et al., “A 1.28um2 contactless memory cell technology for a 3V-only 64Mbit EEPROM, “IEEE International Electron Device Meeting, pp. 991-993, 1992.
    [1.42] M. Gill et al., “A 5-volt contactless array 256 Kbit Flash EEPROM technology,” IEEE International Electron Device Meeting, pp. 428-431, 1988.
    [1.43] Atsushi Nozoe et. al, “A 256Mb multilevel Flash memory with 2Mb/s program rate for mass storage applications,” IEEE Journal of Solid State Circuits, vol. 34, no. 11, pp. 1544-1550, 1999.
    [1.44] David L. Kencke, Robert Richart, Shyam Garg, and Sanjay K. Banerjee, “A multilevel approach toward quadrupling the density of Flash memory,” IEEE Electron Device Letter, vol. 19, no. 3, pp. 86-888, 1998.
    [1.45] Ken Takeuchi, Tomoharu Tanaka, and Toru Tanzawa, “A multipage cell architecture for high-speed programming multilevel NAND Flash memories,” IEEE Journal of Solid State Circuits, vol. 33, no. 8, pp.1228-1238, 1998.
    [1.46] C. Calligaro, A. Manstretta, A. Modelli, G. Torelli, “Technology and design constraints for multilevel Flash memories,” IEEE International Conference on Electron, Circuit, System, pp. 1005-1008, 1996.
    [1.47] Donato Montanari, Jan Van Houdt, Dirk Wellekens, Guido Van Horebeek, Luc Haspeslagh, Lugo Deferm, Guido Groeseneken, Herman E. Maes, “Voltage variant source side injection for multilevel charge storage in Flash EEPROM,” Transaction on Component, Packing, and Manufactoring Technology, part A, vol. 20, no. 2, June, pp. 196-202, 1997.
    [1.48] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. H. Hensel, M. Ishac, J. Javanifard, M. Langraf, D. Leak, K. Loe, D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja, K. Wojciechowski, “A multilevel cell 32Mb Flash memory,” IEEE International Solid State Circuit Conference, pp. 132-133, 1995.
    [1.49] K. Takeuchi et al.,”A double-level-Vth select gate array architecture for multilevel NAND Flash memories,” IEEE Journal of Solid State Circuits, vol. 31, No. 4, pp. 602-609, 1996.
    [1.50] M. Bauer et al.,”A multilevel cell 32Mb Flash memory,” IEEE International Solid State Circuit Conference, pp. 132-133, 1995.
    [1.51] T.S. Jung et al., “A 3.3V 128Mb multilevel NAND Flash memory for mass storage applications,: IEEE International Solid State Circuit Conference, pp.32-33, 1996.
    [1.52] Boaz Eitan, Reza Kazerounian and Anirban Roy, Giuseppe Crisenza, Paolo Cappelletti and Alberto Modelli, “Multilevel Flash cells and their trade-offs,” IEEE International Electron Device Meeeting, pp.169-172, 1996.
    [1.53] M. Ohi, A Fukumoto, Y. Kunori, H. Onoda, N.Ajika, M. Hatanaka and H. Miyoshi, “An asymmetrical offset source/drain structure for virtual groud array Flash memory with DINOR operation,” Symposium on VLSI Technology, pp. 57-58, 1993.
    [1.54] Di-Son Kuo, Mark Simpson, Len Tsou and Saiyen Mukherjee, “TEFET-A high density, low erase voltage, trench Flash EEPROM,” Symposium on VLSI Technology, pp. 51-52, 1994.
    [1.55] Danny P. Shum, Jack M. Higman, Michael G. Khazhinsky, Kevin Y. Wu, Soolin Kao, J. David Burnett, and Craig T. Swift, “Corner field effect of the CMP oxide recess in shallow trench isolation technology for high density Flash memories,” IEEE International Electron Device Meeting, pp.665-668, 1997.
    [1.56] Koichi Seki et al, “An 80ns 1Mb Flash memory with on-chip erase/erase-verify controller,” International Solid State Circuit Conference, pp. 60-61, 1990.
    [1.57] Koji Sakui, Kazushige Kanda, Hiroshi Nakamura, Ken-ichi Imamiya, and Junichi Miyamoto, “A sophisticated bit-by-bit verifying scheme for NAND EEPROM’s,” IEEE Symposium on VLSI Circuits, pp. 236-237, 1998.
    [1.58] T. Tanaka, M. Momodoimi, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, and F. Masuolka, “ A 4-Mbit NAND EEPROM with tight programmed Vt distribution,” IEEE Symposium on VLSI Circuits, pp. 105-106, 1990.
    [1.59] K. Yoshikawa, “impact of cell threshold voltage distribution in the array of Flash memories on scaled and multilevel Flash memory design,” IEEE Symposium on VLSI Technology, pp. 240-241, 1996.
    [1.60] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, “A quick intelligent programming architecture and a shielded bitline sensing method for 3V only NAND Flash memory, “IEEE Journal of Solid State Circuits, vol.29, pp. 1366-1373, Nov. 1994.
    [1.61] K. D. Suh, B. H. Suh, Y. H. Lim, J. K. Kim, Y. J. Choi, Y. N. Koh, S. S. Lee, S. C. Kwon, B. S. Choi, J. S. Yum, J. H. Choi, J. R. Kim, and H. K. Lim, “ A 3.3.V 32Mb NAND Flash memory with incremental step pulse programming scheme,” International Solid State Circuit Conference, pp. 128-129, 1995.
    [1.62] G. J. Hemink, T. Tanaka, T. Engoh, S. Aritome, and R. Shirota, “Fast and accurate programming method for multilevel NAND Flash EEPROM’s,” IEEE Symposium on VLSI Circuits, pp. 129-130, 1995.
    [2.1] G. Samachisa et al.,”A 128K Flash EEPROM using double polysilicon technology,” IEEE Journal of Solid State Circuits, vol. 22, pp. 676-682, Oct. 1987.
    [2.2] Imamiya, K. et al.,”A 35ns-cycle time 3.3.V only 32Mb NAND Flash EEPROM,” International Solid State Circuit Conference, pp. 130-131, 1995.
    [2.3] Vergil Niles Kynett, Alan Baker, Mick Lee Fandrich, George P. Hoekstra, Owen Jungroth, Jerry A. Kreifels, Steven wells, and Mark D. Winston, “An in-system reprogrammable 32Kx8 CMOS Flash memory,” IEEE Journal of Solid State Circuits, vol. 23, no. 5, Octorber, 1988.
    [2.4] “Data Management Software (DMS) for AMD Simultaneous Read/Write Flash Memory Devices” Technology background, 22274A, AMD.
    [2.5] Jin-Ki Kim et al., “A 120mm2 64Mb NAND Flash memory achieving 180ns/byte effective program speed,” IEEE Symposium on VLSI Technology, pp. 168, 1996.
    [2.6] T. Tanaka, M. Momodoimi, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, and F. Masuolka, “ A 4-Mbit NAND EEPROM with tight programmed Vt distribution,” IEEE Symposium on VLSI Technology, pp. 105-106, 1990.
    [2.7] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, “A quick intelligent programming architecture and a shielded bitline sensing method for 3V only NAND Flash memory, “IEEE Journal of Solid State Circuits, vol.29, pp. 1366-1373, Nov. 1994.
    [2.8] Toshio Takeshima, Hiroshi Sugawara, Hiroshi Takada, Yoshiaki Hisamune, Kohji Kanamori, Takeshi Okazawa, Tatsunori Murotani, Isao Sasaki, “A 3.3V single-power-supply 64Mb Flash memory with dynamic bit-line latch (DBL) programming scheme,” International Solid State Circuit Conference, pp.148-149, 1994
    [2.9] Alan Baker et al, “A 3.3V 16Mb Flash memory with advanced write automation,” International Solid State Circuit Conference, pp. 146-147, 1994.
    [2.10] O. Sakamoto, H. Onoda, T. Katayama, K. Hayashi, N. Yamasaki, K. Sakakibara, T. Ohnakado, H. Takada, N. Tsuji, N. Ajika, M. Hatanaka, and H. Miyoshi, “A high programming throughput 0.35mm P-channel DINOR Flash memory,” IEEE Symposium on VLSI Circuits, pp. 222-223, 1996.
    [2.11] S. Kobayashi et al., “Memory array architecture and decoding scheme for 3V only sector erasable DINOR Flash memory,” IEEE Symposium on VLSI Circuits, pp. 97-98, 1993.
    [2.12] H. Masuda et al.,”A 5V only 64K dynamic RAM based on high S/N design,” IEEE Journal of Solid State Circuits, vol. 15, no. 5, pp. 846-854, Oct. 1980.
    [2.13] Akihiro Nitayama, Yusuke kohyama, and Katsuhiko Hieda, “Future directions for DRAM memory cell technology,” IEEE International Electron Device Meeting, pp. 355-358, 1998.
    [2.14] Takayuki Kawahara, Yoshiki Kawajiri, Masashi Horiguichi, Takesada Akiba, Goro Kitsukawa, Tokui Kure, and Masakazu Aoki, “A charge recycle refresh for Gb-scale DRAM’s in file applications,” IEEE Journal of Solid State Circuits, pp. 715-722, 1994.
    [2.15] Roberto Gastaldi, David Novosel, Marco Dallabora, and Giulio Casagrande, “A 1-Mbit CMOS EPROM with enhanced verification,” JSC, vol 23, no. 5, Octorber, 1988.
    [2.16] Takeshi Nakayama, Shin-ichi Kobayashi, Yoshikazu Miyawaki, Yasushi Terada, Natsuo Ajika, Makoto Ohi, Hideaki Arima, Takayuki Matsukawa, Tsutomu Yoshibara, and Kimio Suzuki, “A 60ns 16Mb Flash EEPROM with program and erase sequence controller,” IEEE Journal of Solid State Circuits, vol. 26, No. 11, pp. 1600-1615, 1991.
    [2.17] T. Tanaka et al. “A quick intelligent program architecture for 3V-only NAND-EEPROMs,” IEEE Symposium on VLSI Circuits, pp. 20-21, 1992.
    [2.18] M. Lanzoni, L. Briozzo, B. Ricco, “A novel approach to controlled programming of tunnel-based floating-gate MOSFETs,” IEEE Journal of Solid-State Circuits, vol. 29, No. 2, pp. 147 –150, 1994.
    [2.19] H. Gotou, ”New operation mode for staked-gate flash memory cell,” IEEE Electron Device Letter, vol.16, pp.121-123, 1995.
    [2.20] T. Ohnakado,H. Takada,K. Hayashi, K. Sugahara, S. Satoh, H. Abe, “Novel self-limiting program scheme utilizing N-channel select transistors in P-channel DINOR flash memory,” IEEE International Electron Device Meeting, pp. 181-184, 1996.
    [2.21] Masayoshi Ohkawa et al., “A 98mm2 die size 3.3V 64Mb Flash memory with FN-NOR type four level cell,” IEEE Journal of Solid State Circuits, vol. 31, no. 11, pp. 1584-1589, 1996.
    [2.22] D. P. Shum, C. T. Swift, J. M. Higman, W. J. Taylor, K. Chang, K. M. Chang, and J. R. Yeargain, “A novel band-to-band tunneling induced convergence mechanism for low current, high density Flash EEPROM applications,” in IEEE International Electron Device Meeting, pp. 41-44, 1994.
    [2.23] M. H. Chi and A. Bergemont, “Multilevel Flash/EPROM memories: New self-convergent programming methods for low voltage applications”, in IEEE International Electron Device Meeting, pp. 271-274, 1995.
    [2.24] C.-Y. Hu, D. L. Kencke, S.K. Banerjee, R. Richart, B. Bandyopadhyay, B. Moore, E. Ibok and S. Garg “Substrate-current-induced hot electron (SCIHE) injection: a new convergence scheme for Flash memory,” in IEEE International Electron Device Meeting, pp. 283-287, 1995
    [2.25] C. S. Yang, W. J. Wong, S. J. Shen, Y. S. Wang, and C. C.-H. Hsu, "New self-convergent programming method for multi-level AND Flash memory," in Conference of Solid State Devices and Materials, pp.140-141, 1998.
    [2.26] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. H. Hensel, M. Ishac, J. Javanifard, M. Langraf, D. Leak, K. Loe, D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja, K. Wojciechowski, “A multilevel cell 32Mb Flash memory,” International Solid State Circuit Conference, pp. 132-133, 1995.
    [2.27] M. Lanzoni, L. Briozzo, B. Ricco, “A novel approach to controlled programming of tunnel-based floating-gate MOSFETs,” IEEE Journal of Solid-State Circuits, vol. 29, No. 2, pp. 147 –150, 1994.
    [2.28] H. Gotou, ”New operation mode for staked-gate flash memory cell,” IEEE Electron Device Letter, vol.16, pp.121-123, 1995.
    [2.29] H. Gotou, ”An experimental confirmation of automatic threshold voltage convergence in a flash memory using alternating word-line voltage pulse,” IEEE Electron Device Letter, vol.18, pp.503-505, 1997
    [2.30] G.H.Weiss and D.E.Young, "Transient-induced latchup testing of CMOS integrated circuits," in Proceeding EOS/ESD Symposium, 1995, vol. EOS-17, pp. 194-198.
    [2.31] Y.-S. Chang; S.-K. Gupta, M.A. Breuer, “Analysis of ground bounce in deep sub-micron circuits” IEEE 15th VLSI Test Symposium, pp. 110 –116, 1997.
    [2.32] M.J. Hargrove, S. Voldman, R.Gauthier, J.Brown, K.Duncan, W. Craig, “Latchup in CMOS technology” IEEE Proceedings International Reliability Physics Symposium, pp.269 –278, 1998.
    [2.33] T. Gabara, “Reduced ground bound and improved latchup suppression through substrate conduction,” IEEE Journal of Solid-State Circuits, vol.23, No. 5, pp. 1224-1232, 1988
    [2.34] D. Pierce, D. Durgin, “An overview of electrical overstress effects on semiconductor devices,” Proceeding EOS/ESD Symposium, pp. 120-131, 1981.
    [2.35] C. Diaz, C. Duvvury, S.M. Kang, L.Wagner, “Electrical overstress (EOS) power profiles: A guideline to qualify EOS hardness of semiconductor devices,” Proceeding EOS/ESD Symposium Pp. 88-94, 1992.
    [2.36] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEEE International Electron Device Meeting, pp. 291-294, 1994.
    [2.37] S. Haddad, C. Chang, A. Wang, J. Bustillo, J. Lien, T. Montalvo, and M. Van Buskirk, : An investigation of erase-mode dependent hole trapping in Flash EEPROM memory cell,” IEEE Electron Device Letter., vol. 11, No. 11, pp. 514-516, 1990.
    [2.38] T.C. Ong, A. Fazio, N. Mielke, S. Pan,; N. Righos, G. Atwood, S. Lai,, “Erratic Erase In ETOX Flash Memory Array” 1993 Symposium on VLSI Technology, pp. 83 –84, 1993.
    [2.39] S. Hadded, C. Chang, A. Wang, J. Bustillo, J. Lien, T. Montalvo, and M. V. Buskirk, "An investigation of erase-mode dependent hole trapping in flash EEPROM memory cell," IEEE Electron Device Letter, vol. 11, pp. 514-516, Nov. 1990.
    [2.40] K. T. San, C. Kaya, and T. P. Ma, "Effects of erase source bias on flash EPROM device reliability," IEEE Transaction on Electron Devices, vol. 42, pp. 150-159, Jan. 1995.
    [2.41] E. Wohlrab, G. Georgakos, and W. Weber, “ A novel self-limiting programming method for flash memory,” IEEE Nonvolatile Semiconductor Memory Workshop, pp.113-115, 1997.
    [2.42] S. Yamada, T. Suzuki, E. Obi, M. Oshikiri, K. Naruke, and M. Wada, “A self-convergence erasing scheme for a simple stacked gate Flash EEPROM,” in IEEE International Electron Device Meeting, pp. 307-311, 1991.
    [2.43] D. P. Shum, C. T. Swift, J. M. Higman, W. J. Taylor, K. Chang, K. M. Chang, and J. R. Yeargain, “A novel band-to-band tunneling induced convergence mechanism for low current, high density Flash EEPROM applications,” in IEEE International Electron Device Meeting, pp. 41-44, 1994.
    [2.44] M. H. Chi and A. Bergemont, “Multilevel Flash/EPROM memories: New self-convergent programming methods for low voltage applications”, in IEEE International Electron Device Meeting, pp. 271-274, 1995.
    [2.45] C.-Y. Hu, D. L. Kencke, S.K. Banerjee, R. Richart, B. Bandyopadhyay, B. Moore, E. Ibok and S. Garg “Substrate-current-induced hot electron (SCIHE) injection: a new convergence scheme for Flash memory,” in IEEE International Electron Device Meeting, pp. 283-287, 1995.
    [2.46] C. S. Yang, W. J. Wong, S. J. Shen, Y. S. Wang, and C. C.-H. Hsu, "New self-convergent programming method for multi-level AND Flash memory," in Conference of Solid State Devices and Materials, pp.140-141, 1998.
    [2.47] C.C.-H. Hsu, A. Acovic, L.Dori, B. Wu, T.Lii, D. Quinlan, D. DiMaria, Y. Taur, M. Wordeman and T. Ning, “A high speed, low power p-channel Flash EEPROM using silicon rich oxide as tunneling dielectric”, in Conference of Solid State Devices and Materials,pp.140-141, 1992
    [2.48] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka, and H. Miyoshi, “Novel electron injection method using band-to-band tunneling induced hot electron (BBHE) for Flash memory with a p-channel cell,” in IEEE International Electron Device Meeting, pp. 279-282, 1995.
    [2.49] T. Ohnakado, H. Takada, K. Hayashi, K. Sugahara, S. Satoh, and H. Abe, “Novel self-limiting program scheme utilizing N-channel select transistors in P-channel DINOR Flash memory,” in IEEE International Electron Device Meeting, pp. 181-184, 1996.
    [2.50] Takahiro, T. Hiroshi, Hayashi, Kiyoshi, Mitsubishi Denki Kabushiki Kaisha, “Non-volatile semiconductor memory device capable of high speed programming/erasure,” US patent No.5818761, Oct. 6, 1998
    [2.51] S. J. Shen, C. S. Yang, Y. S. Wang, C. C.-H. Hsu, “Novel self-convergent programming scheme for multilevel P-channel Flash memory,” in IEEE International Electron Device Meeting, pp.287-290, 1997.
    [2.52] R.-L. Lin, Y.-S. Wang, and C. C.-H. Hsu, “P-channel Flash memory,” in Nonvolatile Semiconductor Memory Workshop, pp. 27-34, 1998
    [2.53] T. S-D. Chang, “PMOS memory cell with hot electron injection programming and tunneling erasing,” US patent No. 5687118, Nov. 11,1997.
    [2.54] T. S.-D. Chang, “PMOS Flash memory cell capable of multi-level threshold voltage storage,” US patent No. 5666307, Sep. 9,1997.
    [2.55] T. S.-D. Chang, “Non-volatile electrically erasable memory with PMOS transistor NAND gate structure,” US patent No.5581504, Dec. 3, 1996.
    [3.1.1] Papadas, C., Ghibaudo, G., Panakakis, G., Gounelle, C., Mortini, P., and Riva, C.,”Influence of tunnel oxide thickness variation on the programmed window of FLOTOX EEPROM cells,” Solid State Electron, vol. 35, no. 8, pp. 1195-1196, 1992.
    [3.1.2] Fukuda, H., Yasuda, M., Iwabushi, T., and Ohno, S, “Novel N20-oxynitridation technology for forming highly reliable EEPROM tunnel oxide films,” IEEE Electron Device Letter, vol. 12, no. 11, pp. 587-589, 1991.
    [3.1.3] C. Papadas, G. Ghibaudo, F. Pio, C. Riva, P. Mortini and G. Pananakakis, “Influence of rapid thermal nitridation process in N20 ambient on the endurance performance of FLOTOX EEPROM cells,” Electronics Letter, vol. 29, no. 2, pp. 242-243, 1993.
    [4.2.1.1] Jin-Ki Kim et al., “A 120mm2 64Mb NAND Flash memory achieving 180ns/byte effective program speed,” IEEE Symposium on VLSI Circuits, pp. 168, 1996.
    [4.2.1.2] T. Tanaka, M. Momodoimi, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi, and F. Masuolka, “ A 4-Mbit NAND EEPROM with tight programmed Vt distribution,” IEEE Symposium on VLSI Circuits, pp. 105-106, 1990.
    [4.2.1.3] T. Tanaka, Y. Tanaka, H. Nakamura, K. Sakui, H. Oodaira, R. Shirota, K. Ohuchi, F. Masuoka, and H. Hara, “A quick intelligent programming architecture and a shielded bitline sensing method for 3V only NAND Flash memory, “IEEE Journal of Solid State Circuits, vol.29, pp. 1366-1373, Nov. 1994.
    [4.2.1.4] K. D. Suh et al.,”A 3.3V 32MB NAND Flash memory with incremental step pulse programming scheme,” ISSSCC, pp. 128-129, 1995.
    [4.2.1.5] Jin-Ki Kim et al., “A 120mm2 64Mb NAND Flash memory achieving 180ns/byte effective program speed,” IEEE Symposium on VLSI Circuits, pp. 168, 1996.
    [4.2.1.6] Imamiya, K. et al.,”A 35ns-cycle time 3.3.V only 32Mb NAND Flash EEPROM,” International Solid State Circuit Conference, pp. 130-131, 1995.
    [4.2.1.7] Ken Takeuchi, Shiniji Satoh, Tomoharu Tanaka, Ken-ichi Imamiya and Koji Sakui, “A negative Vth cell architecture for high scalable, excellent noise immune and highly reliable NAND Flash memories,” IEEE Symposium on VLSI Circuits, pp. 234-245, 1998.
    [4.2.1.8] T. Tanaka et al., “A 3.4Mbyte/s programming 3-level NAND Flash memory saving 40% die size per bit,” IEEE Symposium on VLSI Circuits, pp. 65-66, 1997.
    [4.2.1.9] G. J. Hemink et al.,”Fast and accurate programming method for multilevel NAND Flash EEPROM’s,” IEEE Symposium on VLSI Circuits, pp. 129-130, 1995.
    [4.2.1.10] H. Kume et al., “A Flash erase EEPROM cell with an asymmetric source and drain structure,” IEEE International Electron Device Meeting, pp. 560-563, 1987.
    [4.2.1.11] J. Witters, G. Groeseneken, and H. Maes, “Degradation of thin gate oxides,” IEEE TRANSACTION ON ELECTRON DEVICES, vol. 36, no. 9, pp. 1663-162, 1989.
    [4.2.1.12] Yu Zongguang, Xu zheng, Ye shouyin, Huang Wei, Wang Wanye, “The generation and its influences of trapped charges in FLOXTOX EEPROM tuunel oxide under various erase/write conditions,” Int’l Solid-State and Integrated Circuit Technology Conference, pp.168-172, 1998.
    [4.2.1.13] Satoh, S., Nakamura, T., Shimizu, K., Takeuchi, K., Iizuka, H., Antome, S., Shirota, R.,”A Novel Gate-Offset NAND Cell (GOC-NAND) Technology Suitable for High-Density and Low-Voltage-Operation Flash Memories,” IEEE International Electron Device Meeting, pp. 11.2.1-11.2.4, 1999.
    [4.2.1.14] Sam S.-D. Chu and Adnrew J. Steckl, “The effect of trench-gate-oxide structure on EPROM device operation,” IEEE Electron Device Letter, vol. 9, no. 6, pp. 284-286, 1988.
    [4.2.2.1] Toshio Takeshima, Hiroshi Sugawara, Hiroshi Takada, Yoshiaki Hisamune, Kohji Kanamori, Takeshi Okazawa, Tatsunori Murotani, Isao Sasaki, “A 3.3V single-power-supply 64Mb Flash memory with dynamic bit-line latch (DBL) programming scheme,” International Solid State Circuit Conference, pp.148-149, 1994.
    [4.2.2.2] E. Wohlrab, G. Georgakos, and W. Weber, “ A novel self-limiting programming method for flash memory,” IEEE Nonvolatile Semiconductor Memory Workshop, pp.113-115, 1997.
    [4.2.2.3] T. Ohnakado,H. Takada,K. Hayashi, K. Sugahara, S. Satoh, H. Abe, “Novel self-limiting program scheme utilizing N-channel select transistors in P-channel DINOR flash memory,” IEEE International Electron Device Meeting, pp. 181-184, 1996.
    [4.2.2.4] M. Lanzoni, L. Briozzo, B. Ricco, “A novel approach to controlled programming of tunnel-based floating-gate MOSFETs,” IEEE Journal of Solid-State Circuits, vol. 29, No. 2, pp. 147 –150, 1994.
    [4.2.3.1] M. Kato et al.,”A 0.4mm2 self-aligned contactless memory cell technology suitable for 256Mbit Flash memories,” IEEE International Electron Device Meeting, pp. 921-924, 1994.
    [4.2.3.2] A Nozoe et al.,”A 3.3V high density AND Flash memory with 1ms/512B erase and program time,” International Solid State Circuit Conference, pp.124-125, 1995.
    [4.2.3.3] Hitoshi Miwa, Toshihiro Tanaka, Kazuyoshi Oshima, Yasuhiro Nakamura, Tatsuy Ishii, Atsushi Ohba, Yasuhiro Kour, Tuguhiro Furukawa, Yoshihiro Ikeda, Osamu Tsuchiya, Ryoichi Hiri, Kazuyuki Miyazawa, “A 140mm2 64Mb AND Flash memory with a 0.4mm technology,” International Solid State Circuit Conference, pp. 34-35, 1996.
    [5.1.1] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” IEEE International Electron Device Meeting, pp. 291-294, 1994.
    [5.1.2] S. Haddad, C. Chang, A. Wang, J. Bustillo, J. Lien, T. Montalvo, and M. Van Buskirk, : An investigation of erase-mode dependent hole trapping in Flash EEPROM memory cell,” IEEE Electron Device Letter, vol. 11, No. 11, pp. 514-516, 1990.
    [5.1.3] T.C. Ong, A. Fazio, N. Mielke, S. Pan,; N. Righos, G. Atwood, S. Lai,, “Erratic Erase In ETOX Flash Memory Array” 1993 Symposium on VLSI Technology, pp. 83 –84, 1993.
    [5.1.4] S. Hadded, C. Chang, A. Wang, J. Bustillo, J. Lien, T. Montalvo, and M. V. Buskirk, "An investigation of erase-mode dependent hole trapping in flash EEPROM memory cell," IEEE Electron Device Letter, vol. 11, pp. 514-516, Nov. 1990.
    [5.1.5] K. T. San, C. Kaya, and T. P. Ma, "Effects of erase source bias on flash EPROM device reliability," IEEE Transaction on Electron Devices, vol. 42, pp. 150-159, Jan. 1995.
    [5.2.1] D. P. Shum, C. T. Swift, J. M. Higman, W. J. Taylor, K. Chang, K. M. Chang, and J. R. Yeargain, “A novel band-to-band tunneling induced convergence mechanism for low current, high density Flash EEPROM applications,” in IEEE International Electron Device Meeting, pp. 41-44, 1994.
    [5.2.2] K. Naruke, S. Yamada, E. Obi, S. Taguchi, and M. Wada, “A new Flash-erase EEPROM cell with a sidewall select-gate on its source side,” in IEEE International Electron Device Meeting, pp.603-606, 1989.
    [5.2.3] N. Ajika, M. Ohi, T. Futatsuya, H. Arima, T. Matsukawa, “A novel cell structure for 4M bit full feature EEPROM and beyond,” in IEEE International Electron Device Meeting, pp. 295-298, 1991.
    [5.2.4] Y. Yamauchi, K. Tanaka, H. Shibayama, and R. Miyake, “A 5V-only virtual ground Flash cell with an auxiliary gate for high density and high speed application,” in IEEE International Electron Device Meeting, pp. 319-322, 1991.
    [5.2.5] R. L. Geiger, P. E. Allen, N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, pp. 149, 1990.
    [5.2.6] C.C.-H. Hsu, A. Acovic, L.Dori, B. Wu, T.Lii, D. Quinlan, D. DiMaria, Y. Taur, M. Wordeman and T. Ning, “A high speed, low power p-channel Flash EEPROM using silicon rich oxide as tunneling dielectric”, in Conference of Solid State Devices and Materials, pp.140-141, 1992
    [5.2.7] R.-L. Lin, Y.-S. Wang, and C. C.-H. Hsu, “P-channel Flash memory,” in Nonvolatile Semiconductor Memory Workshop, pp. 27-34, 1998
    [5.2.8] S. S. Shung, S. N. Kuo, C. M. Yih, and T. S. Chao, “Performance and reliability evaluations of P-channel Flash memories with different programming schemes,” in IEEE International Electron Device Meeting, pp. 295-298,1997.
    [A.1] F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirora,”New ultra high density EPROM and Flash EEPROM with NAND structure cell,” IEEE International Electron Device Meeting, pp. 552-555, 1987.
    [A.2] R. Shirota, R. Nakayam, R. Kirisawa, M. Momodomi, K.Sakui, Y.Itoh, S. Aritome, T.Endoh, F. Hatari, and F. Masuoka, “A 2.3mm2 memory cell structure for 16Mb NAND EEPROMs,” IEEE International Electron Device Meeting, pp. 103-106, 1990.
    [A.3] R. Kirisawa, S. Aritome, R. Nakayama, T. Endoh, R. Shirota, and F. Masuoka, “A NAND structured cell with a new programming technology for highly reliable 5V-only Flash EEPROM,” IEEE Symposium on VLSI Technology, pp. 129-130, 1990.
    [A.4] B. Guillaumot, H. Achard, P. Candelier, S. Deleonibus, F. Martin, “Flash EEPROM cells using shallow trench isolation,” International Nonvolatile Memory Technology Conference, pp. 74-75, 1996.
    [A.5] Seiichi Aritome, Yuji Takeuchi, Shinji Sato, Hiroshi Watanabe, Kazuhiro Shimizu, Gertjan Hemink, and Riichiro Shirota, “A novel side-wall transfer0transistor cell (SWATT cell) for multilevel NAND EEPROMs,” IEEE International Electron Device Meeting, pp. 275-278, 1995.
    [A.6] Kenichi Imamiya, Yoshihisa Sugiura, Hiroshi Nakamura, Toshihiko Himeno, Ken Takeuchi, Tamio Ilehashi, Kazushige Kanda, Koji Hosono, Riichiro Shirota, Seiichi Aritome, Kazuhiro Shimizu, Kazuo Hatakeyama, Koji Sakui, “A 130mm2 256Mb NAND Flash with shallow trench isolation technology,” International Solid State Circuit Conference, pp. 112-113, 1999.
    [A.7] H.S. Kim, J.D. Choi, J. Kim, W.C.Shin, D.J.Kim, K.M.Mang, and S.T. Ahn, “Fast parallel programming of multilevel NAND Flash memory cells using the booster line technology,” IEEE Symposium on VLSI Technology, pp. 65-66, 1997.
    [A.8] Shiniji Satoh, Kzauhiro Shimizu, Tomoharu Tanaka, Fumitaka Arai, Seiichi Aritome, and Riichiro Shirota,”A novel channel boost capacitance (CBC) cell technology with low program disturbance suitable for fast programming 4Gbit NAND Flash memories,” IEEE Symposium on VLSI Technology, pp. 108-109, 1998.
    [A.9] Jung Dal Choi, Dong Gi Lee, Dong Jun Kim, Seong Soon Cho, hong Soo Kim, Chul Ho Shin and Sung Tae Ahn, “A triple polysilicon stacked Flash memory cell with wordline self-boosting programming,” IEEE International Electron Device Meeting, pp. 283-286, 1997.
    [A.10] Gautam Verma and Neal Mielke, “Reliability performance of ETOX based Flash memories,” International Reliability Physics Symposium, pp. 158-166, 1988.
    [A.11] Stefan Lai, “Tuunel oxide and ETOX Flash scaling limitation,” Int’l Nonvolatile Memory Technology Conference, pp. 6-7, 1998.
    [A.12] Kuniyoshi Yoshikawa, Seiichi Mori, Eiji Sakagami, Yoichi Ohshima, Yukio Kaneko, and Norihisa Arai, “Lucky-hole injectio induced by band-to-band tunneling leakage in stacked gate transistors,” IEEE International Electron Device Meeting, pp. 577-580, 1990.
    [A.13] N. Tsuji, N. Ajika, K. Yuzuriha, Y. Kunori, M. Hatanaka, and H. Miyoshi, ”New erase scheme for DINOR Flash memory enhancing erase/write cycling endurance characteristics,” IEEE International Electron Device Meeting, pp. 53-56, 1994.
    [A.14] S. Kobayashi et al., “A 3.3V only 16Mb DINOR Flash memory,” International Solid State Circuit Conference, pp. 122-123, 1995.
    [A.15] Shin-ichi Kobayashi, Hiroaki Nakai, Yuichi Kunori, Takeshi Nakayama, Yochikazu Miyawaki, Yasushi Terada, Hiroshi Onoda, Natsuo Ajika, Masahiro Hatanaka, Hirokazu Miyoshi, and Tsutomu Yoshihara, “Memory array architecture and decoding scheme for 3V only sector erasable DINOR Flash memory,” IEEE Journal of Solid State Circuits, vol. 29, No. 4, pp. 454-460, 1994.
    [A.16] C. Papadas, Gerard Ghibaudo, Pananakakis, C. Riva, and P. Ghezzi, “Model for programming window degradation in FLOXTOX EEPROM cells,” IEEE Electron Device Letter, vol. 13, no. 2, pp. 89-91, 1992.
    [A.17] Yoshimitsu Yamauchi, Hiroshi Ishihara, Kenichi Tanaka, Keizo Sakiyama, and Ryuichiro Miyake, “A versatile stacked storage capacitor on FLOTOX cell for megabit NVRAM applications,” IEEE International Electron Device Meeting, pp. 595-598, 1989.
    [A.18] Sik On Kong, and Chee Yee Kwok, “Simulation of the programming operations of the FLOTOX EEPROM,” Solid-State Electronics, vol. 37, vol. 12, pp. 1949-1969, 1994.
    [A.19] Ching-Yuan Wu and Chiou-Feng Chen, “Physical model for characterizing and simulating a FLOTOX EEPROM device,” Solid-State Electronics, vol. 25, no. 5, pp. 705-716, May 1992.
    [A.20] Luey Chwan Liong and Po-Ching Liu, “A theoretical model for the current-voltage characteristics of a floating gate EEPROM cell,” IEEE TRANSACTION ON ELECTRON DEVICES, vol. 40, no. 1, pp. 146-151, 1993.
    [A.21] Glen Rosendale, Jim Payne, Saroj Pathak, Todd Randazzo, Brad Larsen, Donald Erickson, Dean Allum, Fraklyn Blaha, “A 13ns Mb CMOS EPROM using 1-T FAMOS Technology,” International Solid State Circuit Conference, pp.42-43, 1993.
    [A.22] David K. Y. Liu, Cetin Kaya, Man Wong, Jim Paterson and Pradeep Shah, “Optimiaztion of a source-side-injection FAMOS cell for Flash EPROM applications,” IEEE International Electron Device Meeting, pp. 315-318, 1991.
    [A.23] K. S. Kim et al., “A novel dual string NOR (DuSNOR) memory cell technology scalable to the 256Mbit and 1 Gbit Flash memories,” IEEE International Electron Device Meeting, pp. 263-266, 1995.
    [A.24] B. Eitan et al.,”Alternate metal virtual ground (AMG)-A new scaling concept for very high-density EPROM’s,” IEEE Electron Device Letter vol.12, No.9, pp. 450-452, 1991.
    [A.25] A. Bergemont, H. Haggag, L. Anderson, E. Shacham, and G. Wolstenholme, “NOR virtual ground (NVG)—A new scaling concept for very high density Flash EEPROM and its implementation in a 0.5□m process,” IEEE International Electron Device Meeting, pp. 15-18, 1993.
    [A.26] B. Eitan, “Cell concepts and array architectures,” the 14th Nonvolatile Semiconductor Memory Workshop, 1995.
    [A.27] Y. Ma et al, “A dual-bit split-gate EEPROM (DSG) cell in contactless array for single Vcc high density Flash memories,” IEEE International Electron Device Meeting, pp.57-60, 1995.
    [A.28] Hitoshi Kume et al., “A 1.28mm2 contactless memory cell technology for a 3V only 64Mbit EEPROM,” IEEE International Electron Device Meeting, pp. 991-994, 1992.
    [A.29] Yosiaki S. Hisamune, Kohji Kanamori, Taishi Kubota, Yoshiyuki Suzuki, Masaru Tsukiji, Eiji Hasegawa, Akihiko Ishitani, and Takeshi Okazawa, “A high capacitive-soupling ratio (HiCR) cell for 3V-only 64 Mbit and future Flash memiries,” IEEE International Electron Device Meeting, pp. 19-22, 1993.
    [A.30] R. Bez, E. Cammerlenghi, D. Canterelli, L. Ravazzi, and G. Crisenza, “A novel method for the experimental determination of the coupling ratios in submicron EPROM and Flash EEPROM cells,” IEEE International Electron Device Meeting, pp. 99-102, 1990.
    [A.31] K. Prall, W. I. Kinney, and J. Macro, “Characterization and suppression of drain coupling in submicrometer EPROM cell,” IEEE TRANSACTION ON ELECTRON DEVICES, vol. 34, no. 12, pp. 2463, 1987.
    [A.32] B. Moison, C. Papadas, G. Ghibaudo, P. Mortini, and G. Pananakakis, “New method for the extraction of the couplin gratios I FLOTOX cells,” IEEE TRANSACTION ON ELECTRON DEVICES, vol. 40, no. 10, pp. 1870-1872, 1993
    [A.33] K. Tamer San, Cetin Kaya, David K. Y. Liu, Tso-Ping Ma, and Pradeep Shah, “A new technique for determining the capacitive coupling coefficients in Flash EPROM’s,” IEEE Electron Device Letter, vol.13, no.6, pp. 328-330, 1992.
    [A.34] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFET,” IEEE Transaction on Electron Devices, vol. ED-26, no. 4, pp. 520-532, 1979.
    [A.35] E.Takeda, H. Kume, T. Toyabe and S.Asai,” Submicrometer MOSFET structure for minimizing hot carrier generation,” IEEE Transaction on Electron Devices, vol.ED-29, vol., p.611-p.618, 1982
    [A.36] W.Shockley, “Problems related to p-n junction in silicon,” Solid- State Electron., vol.2, pp.35-67, 1961
    [A.37] J.F.Verwey, R.P. Kramer and B.J.de Maagt, “Mean free path of hot electrons at the surface of boron-doped silicon,” Journal of Applied Physics, vol.46, p.2612-p.2619, 1975
    [A.38] T.H.Ning, C.M. Osburn and H.N. Yu, ”Emission probability of hot electrons from silicon into silicon dioxide,” Journal of Applied Physics, vol.48, p.286-p.293, 1977
    [A.39] C.Hu, “Lucky-electron model of hot-electron emission,” in IEEE International Electron Device Meeting, p.22-p.25,1979
    [A.40] S.Tam, P.-K.Ko and C.Hu, “Lucky-electron model of channel hot electron injection in MOSFET’s,” IEEE Transaction on Electron Devices, vol.ED-31, vol., p.1116-p.1125, 1984
    [A.41] T.-C. Ong, P.K. Ko and Chenming Hu, “Modeling of substrate current in p-MOSFET’s,” IEEE Electron Device Letter, vol.-8, no.9., p.413-p.416, 1987
    [A.42] T.-C. Ong, K. Seki, P.K. Ko, and Chenming Hu, “P-MOSFET gate current and device degradation,” in IEEE International Reliability Physics Symposium, p.178-p.182, 1989
    [A.43] J. Chen, T.Y. Chan, I.C. Chen, P.K. Ko and C. Hu, “Subbreakdown drain leakage current in MOSFET,” IEEE Electron Device Letter, vol.-8, no.11, p.515-p.517, 1987
    [A.44] Motoaki Tanizawa et. al., “A Complete Substrate Current Model Including Band-to-Band Tunneling Current for Circuit Simulation", in IEEE Transaction on Computer-Aided Design of Circuits and Systems, vol.12, no.11, p.1749, 1993
    [A.45] T.Ozaki et. al., “Analysis of Band-to-Band Tunneling Leakage Current in Trench-Capacitor DRAM Cells”, in IEEE Transaction on Electron Devices Letter, vol.-12, no.3 p.95, 1991
    [A.46] J.CHEN et. al., “Subbreakdown Drain Leakage Current in MOSFET”, in IEEE Transaction on Electron Devices Letter, vol.-8, no.11 p.515, 1987
    [A.47] Stephen A. et. al., “Design for Suppression of Gate-Induced Leakage in LDD MOSFET’s Using Quasi-Two Dimensional Analytical Model”, in IEEE Transaction on Electron Devices, vol.ED-39, no.7, p.1694, 1992
    [A.48] Ming-Jer Chen, “Effect of Back-Gate Bias on Tunneling Leakage in a Gated p+-n Diode”, in IEEE Transaction on Electron Devices Letter, vol.-12, no.5 p.249, 1991
    [A.49] T.Y.Chan, J.Chen, P.K.Ko and C.Hu, “The impact of gate-induced drain leakage on MOSFET scaling,” in IEEE International Electron Device Meeting, p.718-p.721, 1987
    [A.50] R.Shrota, T. Endoh, M.Momodomi, R.Nakayama, S.Inoue, R.Kirisawa and F.Masuoka, “ An accurate model of sub-breakdown due to band-to-band tunneling and its application,” in IEEE International Electron Device Meeting, p.26-p.29, 1988
    [A.51] C.Chang and J.Lien, “Corner-field induced drain leakage in thin oxide MOSFET’s,” in IEEE International Electron Device Meeting, p.714-p.717, 1987
    [A.52] I.-C.Chen, D.J. Coleman and C.W.Teng, “Gate current injection initiated by electron band-to-band tunneling in MOS devices,” IEEE Electron Device Letter, vol.-10, no.7, p.297-p.300, 1989
    [A.53] K.Yoshikawa, S.Mori, E.Sakagami, Y.Ohshima, Y.Kaneko and N.Arai, “Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistor,” in IEEE International Electron Device Meeting, p.577-p.580, 1990
    [A.54] T.Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, “Novel electron injection method using band-to-band tunneling induced hot electron (BBHE) for Flash memory with p-channel cell,” in IEEE International Electron Device Meeting, p.279-p.282, 1995
    [A.55] T.Ohnakado, H. Takada, K. Hayashi, K. Sugahara, S. Satoh and H. Abe,“Novel self-limiting program scheme utilizing n-channel select transistors in p-channel DINOR flash memory,” in IEEE International Electron Device Meeting, 1996
    [A.56] M.Lenzlinger and E.H.Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,” Journal of Applied Physics, vol.40, no.1, p.278-p.283, 1969
    [A.57] Z.A.Weinberg, “On tunneling in MOS structure, “ Journal of Applied Physics, vol.53, p.5052, 1982
    [A.58] B.Ricco and M.V.Fischetti, “Temperature dependence of the currents in silicon dioxide in the high field tunneling regime,” Journal of Applied Physics, vol.55, p.4322, 198

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE