研究生: |
鄭百廷 Cheng, Pai-Ting |
---|---|
論文名稱: |
電壓誘發柱狀聚苯乙烯成長動力學 The kinetics of PS pillar induced by electric field |
指導教授: |
李三保
Lee, San-Boh |
口試委員: |
侯春看
Hou, Chun-Kan 鄒若齊 Zou, Ruo-Ci 黃健朝 Huang, Jian-Chao 蔣東堯 Jiang, Dong-Yao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 聚苯乙烯 、柱狀 、板高 、柱狀直徑 |
外文關鍵詞: | polystyrene, pillar, spacer height, diameter of pillar |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
觀察聚苯乙烯薄膜在高溫下通電壓使其不穩定的成長動力學, 並
觀察他的直徑跟高度變化, 我們利用原子力顯微鏡跟光學顯微鏡來
分析他的圓柱成長,討論在改變溫度,改變膜厚,改變板高,最後是被紫
外光照射的圓柱成長情形,我們比較在相同實驗條件下,PMMA 跟 PS
的兩種高分子材料的成長機制, 我們定量分析中間部分的圓柱, 並研
究高分子柱跟柱之間的距離變化, 柱跟柱之間彼此距離會隨時間增
加而增加, 最後達到一個穩定狀態並獲得最大值, 我們對柱跟柱之間
最大的距離進行數據模擬得出關係
-0.78E
為我們的實驗結果, 我
們利用不同實驗條件來得到 EHD 柱狀結構的微度, 並提供資訊給不
同領域 EHD 的應用
In the present study, we investigated kinetics of diameter and height
growth of PS pillar by using electrohydrodynamic (EHD) induced
polymer film instabilities. We used AFM and OM to analyze the growth
of the pillars. The effects of the condition of temperature, film thickness,
spacer height and UV irradiation on the pillars growth and pillars
formation were investigated. We also compared the growth of the PS and
the PMMA, which mechanisms are different. PS is 3-D diffusion
mechanism, but PMMA is 2-D diffusion mechanism. Finally, we
measured the periodical pattern of the pillars (λ) from the middle part of
substrate to quantitatively analyze. The wavelength of the pillars
increases with increase of the annealing time until pillars reach steady.
The logarithm characteristic wavelength (λ) versus logarithm electric
field (E) has the relation
-0.78E . The experiment controlled pillar-scale
from EHD on a polymer film by different experimental conditions that
can provide information for wide range of application on EHD
References
[1] J. Bae, Electrohydrodynamic instabilities of polymer thin films: Filler effect.
Journal of Industrial and Engineering Chemistry 18, 378–383 (2012) .
[2] S. Y. Chou and L. Zhuang, Lithographically induced self-assembly of periodic
polymer micropillar arrays. Journal of Vacuum Science & Technology B, 173,
197-202 (1999).
[3] M. J. Fasolka and A. M. Mayes, Block copolymer thin films: physics and
applications. Annual Review of Materials Research. 31, 323-355 (2001).
[4] J. Peng, H. F. ,Wang, B. Y. Li, Y. C. Han, Pattern formation in a confined polymer
film induced by a temperature gradient. Polymer 45 (23), 8013-8017 (2004).
[5]J. Polte. Fundamental growth principles of colloidal metal nanoparticles-a new
perspective. Journal of The Royal Society of Chemistry , 17, 6809-6830 (2015)
[6] S. Y. Chou, L. Zhuang and L. J. Guo, Lithographically induced self-construction
of polymer microstructures for resistless patterning, Applied Physics Letters, 75,
1004–1006 (1999).
[7] E. Schäffer, T. Thurn-Albrecht, T.P. Russell, and U. Steiner, Electrohydrodynamic
instabilities in polymer films. Europhysics Letters., 53, 518-524 (2001).
[8] K. A. Leach, S. Gupta, M. D. Dickey, C. G. Willson, and T. P. Russell, Electric
field and dewetting induced hierarchical structure formation in polymer/polymer/air
trilayers. Chaos, 15 (4), 047506 (2005).
[9] H. M. Tian, Y. C. Ding, J. Y. Shao, X. M. Li, and H. Z. Liu, Formation of irregular
micro- or nano-structure with features of varying size by spatial fine-modulation of
electric field. Soft Matter, 9 (33), 8033-8040 (2013).
[10]N. Wu, M. E. Kavousanakis, and W. B. Russel, Coarsening in the
electrohydrodynamic patterning of thin polymer films. Physical Review E, 81 (2),
135
026306 (2010).
[11] Y. Li , S. H. S. Lai, N. Liu , G. Zhang , L. Liu , G.B. Lee and Wen Jung Li,
Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically
Induced Electrokinetics. Micromachines, 7, 65 (2016).
[12] L. Tonks, A theory of liquid surface rupture by a uniform electric field. Physical
Review, 48 (6), 562-568 (1935).
[13] C. Y. Lau and W. B. Russel, Fundamental Limitations on Ordered
Electrohydrodynamic Patterning. Macromolecules, 44(19), 7746–7751 ( 2011).
[14] D. Bandyopadhyay, and A. Sharma, Self-Organized Microstructures in Thin
Bilayers on Chemically Patterned Substrates. Jounal of Physical Chemistry C, 114 (5),
2237-2247 (2010).
[15] K. Mondal, P. Kumar, and D. Bandyopadhyay, Electric field induced instabilities
of thin leaky bilayers: Pathways to unique morphologies and miniaturization. Journal
of Chemical Physics., 138 ( 2), 024705 (2013).
[16]G. Amarandei, P. Beltrame, I. Clancy, C. O'Dwyer, A. Arshak, U. Steiner, D.
Corcoran, and U. Thiele, Pattern formation induced by an electric field in a
polymer-air-polymer thin film system. Soft Matter, 8(23), 6333-6349 (2012).
[17] L. F. Pease, and W. B. Russel, Charge driven electrohydrodynamic patterning of
thin films. Journal of Chemical Physics., 125( 18) 184716 (2006).
[18] L. Wu, and S. Y. Chou, Electrohydrodynamic instability of a thin film of
viscoelastic polymer underneath a lithographically manufactured mask. Journal of
Non-Newton Fluid, 125( 2-3) 91-99 (2005).
[19] G. Tomar, V. Shankar, A. Sharma, and G. Biswas, Electrohydrodynamic
instability of a confined viscoelastic liquid film. Journal of Non-Newton Fluid, 143,
120-130 (2007).
[20] N. Liu, P. Li, L. Liu, H. Yu, Y. Wang, G. B. Lee, and W. J. Li, 3-D non-UV digital
136
printing of hydrogel microstructures by optically controlled digital
electropolymerization. Journal of Microelectromech. System, 9, 2128–2135 (2015).
[21] X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, Formation of arbitrary patterns in
ultraviolet cured polymer film via electrohydrodynamic patterning. Scientific World
Journal. 2014, 840497. (2014).
[22] A. Brown, G. Burke, and B. Meenan, Patterned cell culture substrates created by hot
embossing of tissue culture treated polystyrene. Journal of Materials Science, 12,
2797-2807 (2013).
[23] Y. Li, G. Huang, X. Zhang, L. Wang, T.J. Lu, and F. Xu. Engineering cell alignment
in vitro. Biotechnology Advances, 32, 347-365 (2014).
[24] Y. Ito, Surface micropatterning to regulate cell functions Biomaterials, Biotechnology
Advances 20, 2333-2342 (1999)
[25] C. H. Trease, M. R. Longman. A. T. Augoust, P. J. S Foot, and B. Pierscionek,
Cell morphology and growth observation studies on novel, chemically unmodified
and patterned polymer surfaces for advanced tissue culture applications. Polymer 109,
13-24 (2017).
[26] N. Liu, W. Liang, L. Liu, Y. Wang, J. D. Mai, G. B. Lee, and W. J. Li,
Extracellular-controlled breast cancer cell formation and growth using non-UV
patterned hydrogels via optically-induced electrokinetics. Lab Chip 14, 1367–1376
(2014).
[27] M. Ventre, F. Causa, and P. Netti, Determinants of cell-material crosstalk at the
interface: towards engineering of cell instructive materials Journal of The Royal
Society Interface, 9, pp. 2017-2032, (2012).
[28] F. Ruffino, V. Torrisi, G. Marletta and M. Grimaldi, Patterning of templated-confined
137
nanoscale Au films by thermal-induced dewetting process of a poly(methylmethacrylate)
underlying layer. Journal of Application Physical., 112, 124316 (2012).
[29] L. Xue and Y. Han, “Pattern formation by dewetting of polymer thin film,” Progress
in Polymer Science, 36, no. 2, P. 269–293 (2011).
[30] S. Manigandana, S. Majumder, A. Suresh, S. Ganguly, K. Kargupta, and D. Banerjee,
Electric field induced dewetting and pattern formation in thin conducting polymer film
Sens. Actuators B: Chemica., 144, pp. 170-175 (2010).
[31] H. C. Wong, and J. T. Cabral, Spinodal clustering in thin films of
nanoparticle-polymer mixtures. Physical Review Letter, 105, 038301 (2010).
[32] G. Amarandei, C. O’Dwyer, A. Arshak, and D. Corcoran, Fractal Patterning of
Nanoparticles on Polymer Films and Their SERS Capabilities. ACS Application of
Material Interfaces, 5, 8655−8662 (2013).
[33] I. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, Micro- and
nanostructured surfaces for selective solar absorption, Advanced Optical Material, 3,
852–881 (2015).
[34] J. S. Peng, F. Yang, D. Chiang, and S. Lee, Kinetics of Field-Induced Surface
Patterns on PMMA. Langmuir, 32(18), 4602−4609 (2016).
[35] Y. F. Chuang, J. S. Peng, F. Yang, D. Chiang and S. Lee, Field-induced formation
and growth of pillars on films of bisphenol-A-polycarbonate RSC Advance, 7,
9015-9023, (2017).
[36] M. Y. Li, Y. F. Chuang, F. Yang and S. Lee, Evolution of color centers in
UV-irradiated syndiotactic polystyrene at elevated temperatures. Materials Research
Express 4 ,025301 (2017)
[37] M. Palacios, O. García and J. Rodríguez-Hernández, Constructing robust and
functional micropatterns on polystyrene surfaces by using deep UV irradiation.
Langmuir, 29( 8), 2756-2763 (2013).
138
[38] B. Ranby and J. Lucki, New aspects of photodegradation and photooxidation of
polystyrene. Pure and Applied Chemistry, 52(2), 295-303 (1980).
[39] C. Wang, C. C. Lin, and C. P. Chu, Crystallization and Morphological Features of
Syndiotactic/Atactic Polystyrene Blends at Low Temperatures near Glass Transition,
Macromolecules, 39, 9267-9277 (2006).
[40] D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers.
Journal of Applied Polymer Science, 13, 1741-1747 (1969).
[41] M. Żenkiewicz, , Methods for the calculation of surface free energy of solids.
Journal of achievements in materials and manufacturing engineering, 24(1), 137-145
(2007).
[42] K.C. Ho,” Buffer-induced surface patterns of Irradiated Poly(2-Hydroxyethyl
Methacrylate)” Master Thesis, National Tsing Hua University (2010)
[43] E. Schäffer, Instabilities in Thin Polymer Films: Structure Formation and Pattern
Transfer, Ph. D Thesis, Konstanz University, P. 23, (2001)
[44] L.F Pease and W. B. Russel, Limitations on length scales for electrostatically
induced submicrometer pillars and holes, Langmuir, 20, 795-804 (2004)