簡易檢索 / 詳目顯示

研究生: 李宗源
Lee, Tsung-Yuan
論文名稱: 海森堡群H_1上的馬尤厄-卡當形式及其應用
The Maurer-Cartan form on the Heisenberg group H_1 and its application
指導教授: 邱鴻麟
Chiu, Hung-Lin
口試委員: 陳瑞堂
Chen, Jui-Tang
賴馨華
Lai, Sin-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 24
中文關鍵詞: 微分幾何海森堡群馬尤厄-卡當形式
外文關鍵詞: Maurer-Cartan form, Darboux derivative
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文中我們將介紹馬尤厄-卡當形式及卡當定理。接下來將其應用在海森堡群$H_1$,尤其著重在Pansu-Sphere上並計算高斯曲率。


    In this thesis, we introduce the Maurer-Cartan form and the Cartan's theorem. We apply them on the Heisenberg group H_1, especially on the the Pansu-Sphere to calculate the Gaussian curvature.

    Abstract(chinese)--------------------------I Abstract-----------------------------------II Contents-----------------------------------III 1.Introduction-----------------------------1 2.Main Theorem-----------------------------2 3.Example----------------------------------5 4.The Heisenberg Group H_1-----------------8 5.The Darboux Derivative on H_1------------11 6.The Codazzi-like Equation----------------18 7.Applications on the Pansu-Sphere---------20 Bibliography-------------------------------24

    1.Hung-Lin Chiu; Yen-Chang Huang; Sin-Hua Lai, An application of the moving frame method to integral geometry in the Heisenberg group, Symmetry Integrability Geom. Methods Appl., 13 (2017), (SCI)
    2.Chiu, Hung-Lin; Liu, Hsiao-Fan, A characterization of constant p−mean curvature surfaces in the Heisenberg group H_1, Advances in Mathematics, 405(2022), (SCI)
    3.Thomas A. Ivey; J. M. Landsberg, Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems, Graduate Studies in Mathematics, Volume 61, American Mathematical Society, 2003.
    4.Chern S.S.; Chen W.H.; Lam K.S., Lectures on Differential Geometry, Series on University Mathematics, Vol.1, World Scientific Publishing Company, 1999.
    5.Manfredo P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition, Dover Publications, 2017.

    QR CODE