研究生: |
陳巧雯 Chiao-Wen Chen |
---|---|
論文名稱: |
有效保結構的冪法求解廣義連續型及離散型黎卡迪方程 Generalized Structure-Preserving Doubling Algorithms for Generalized Continuous and Discrete Time Algebraic Riccati Equations |
指導教授: |
林文偉
Wen-Wei Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 黎卡迪方程 |
外文關鍵詞: | the Caley transformation, generalized continuous-time algebraic Riccati equation, generalized discrete-time algebraic Riccati equation, structure-preserving doubling algrithm |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是以可轉換連續型與散型控制系統的凱利變換為基礎,運用並根據保結構法(SDA)的概念,發展一套G-SDA法,來求解廣義連續型及離散型的黎卡迪方程。文中依各類型,分別列舉在矩陣E條件數偌大的情況下,本法的數值結果,以說明G-SDA法的有效性與特色。
In this paper we extend the structure-preserving doubling algorithm (SDA) to compute the symmetric positive semi-definite solutions of the generalized continuous as well as discrete algebraic Riccati equations. Our main idea is to relate continuous and discrete time control systems based on the generalized Caley transformation.
In the end, we select some examples to illustrate that the G-SDA performs better than the MATLAB commands in the control toolbox.
[1] E. K.-W. Chu, H. Y. Fan, W. W. Lin, and C.-S.Wang (2004). A Structure-Preserving
Algorithm for Periodic Discrete-Time Algebraic Riccati Equations, Int. J. Control,
Vol. 77, no. 8, pp. 767-788.
[2] E. K.-W. Chu, H. Y. Fan, and W. W. Lin (2005). A Structure-Preserving Doubling
Algorithm for Continuous-Time Algebraic Riccati Equations, Lin. Alg. Appl., Vol.
396, pp. 50-80.
[3] E. K.-W. Chu, H. Y. Fan, and W. W. Lin (2003). A Generalized Structure-Preserving
Doubling Algorithm for Generalized Discrete-Time Algebraic Riccati Equations,
preprint 2002-29, NCTS, National Tsing Hua University, Hsinchu 300, Taiwan.
[4] V. L. Mehrmann (1991). The Autonomous Linear Quadratic Control Problem: Theory
and Numerical Solution, Berlin, Springer-Verlag.
[5] V. Mehrmann (1996). A Step Toward A Unified Treatment of Continuous and Discrete
Time Control Problems, Fakult?at f?ur Mathematik, TU Chemnitz-Zwickau,
09107 Chemnitz, FRG.
[6] W. W. Lin and S. F. Xu (2003). Convergence Analysis of Strucure-Preserving Doubling
Algorithms for Riccati-Type Matrix Equations, National Tsing Hua University,
Hsinchu 300, Taiwan.
[7] G. H. Golub and C. F. Van Loan (1996). Matrix Computations, 3rd ed., Baltimore,
Johns Hopkins University Press.
[8] K. Zhou, J. C. Doyle, and K. Glover (1996). Robust and Optimal Control, New Jersey,
Prentice Hall.
[9] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty (1993). Nonlinear Programming:
Theory and Algorithms, 2nd ed., New York, Wiley.
[10] N. J. Higham (1996). Accuracy and Stability of Numerical Algotirhms, Philadelphia,
Society for Industrial and Applied Mathematics.
[11] P. Benner, A. J. Laub, and V. Mehrmann (1995). A Collection of Benchmark
Examples for The Numerical Solution of Algebraic Riccati Equations
I: Continuous-Time Case, Tech. Rep. SPC 95 22, Fakult?at f?ur Mathematik,
TU Chemnitz-Zwickau, 09107 Chemnitz, FRG. Retrieved form
http://www.tu-chemnitz.de/sfb393/spc95pr.html.
[12] P. Benner, A. J. Laub, and V. Mehrmann (1995). A Collection of
Benchmark Examples for The Numerical Solution of Algebraic Riccati Equa-
tions II: Discrete-Time Case, Tech. Rep. SPC 95 23, Fakult?at f?ur Mathematik,
TU Chemnitz-Zwickau, 09107 Chemnitz, FRG. Retrieved form
http://www.tu-chemnitz.de/sfb393/spc95pr.html.