簡易檢索 / 詳目顯示

研究生: 陳銘宇
Ming-Yu Chen
論文名稱: 奈米級鑽石針尖結構在散熱及場發射應用
Thermal spreading and field emission applications of nanoscale diamond tips
指導教授: 黃振昌
Jenn-Chang Hwang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 186
中文關鍵詞: 鑽石奈米結構針尖場發射散熱
外文關鍵詞: diamond, nanostructures, tip, field emission, thermal spreading
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文係以研發在多晶鑽石表面和微米級鑽石顆粒上成長奈米級鑽石針尖結構的製備技術。兩個小時製程下,可以得到長度1 um的單晶奈米鑽石針尖狀結構。並且在多晶鑽石表面上所成長的奈米鑽石結構上,量測其對於散熱性質的影響,奈米鑽石結構在多晶鑽石表面上大幅增加了鑽石的表面積,對於散熱效果方面有部分的成效。在沒有在風扇時最為明顯,增加了7.3 %的散熱效果。不過當外加風速增加時,其所增加的散熱效果就不盡理想,風速越大奈米鑽石針尖狀效果越不明顯。推測原因在於增加風速時,在奈米級針尖狀結構中的通道其直徑也為奈米級通道,風阻太大,僅少數會流經奈米鑽石針尖狀結構所構成的通道。風經過奈米通道時不會流經其中,等同於風只是流經風洞,奈米級的針狀結構在高風速下,可被視為是平面鑽石膜突顯不出其效果。
    本論文也研發一維奈米鑽石針尖狀結構在多晶鑽石表面上的場發射應用,藉由一維的奈米結構可以提高在針尖上結構的電場,進而提高場發射效果。一維奈米鑽石針尖狀結構,加入了nitrogen plasma immersion ion implantation (PIII)的製程,能增進一維奈米鑽石針尖狀結構的場發射效果,得到起始電場3 V/um下達到10 uA/cm2電流密度而且在9 V/um電場下~4 mA/cm2電流密度。
    在微米級鑽石顆粒上不同的成長參數會影響著奈米鑽石的形貌,藉由在基板上加適當偏壓可以得到較長的奈米針狀結構,反應氣氛加入氬氣密度時有顯著的改變。然而微米鑽石的散熱效果十分顯著,奈米鑽石針尖狀結構的效果不是十分明顯。在有外加風速下,微米鑽石的依然顯著增加散熱效果可以達到了~13 %。推測微米級鑽石顆粒所構成的微米級通道在外加風速下會通過且暴露的鑽石面積比較大,然而奈米級鑽石針尖狀結構所增進的效果依然有限。
    本論文也探討在平板及角椎狀的矽基板上奈米碳薄片成長的技術。利用角錐狀的結構,可改變形貌因子增加電場的加強效應,能增進奈米碳薄片的場發射效果,得到起始電場3.2 V/um下達到10 uA/cm2電流密度而且在7 V/um電場下~2.5 mA/cm2電流密度。有關結果收錄在附錄A。


    Vertically aligned nano-scale diamond tips have been successfully synthesized on rugged polycrystalline diamond substrates and micro-size diamond particles. Nano-scale diamond tips, ~ 1 um in height and the diameter at the bottom of a nanotip is ~200 nm, were synthesized on diamond film for 2 hr. The thermal properties of a diamond heat spreader made of nano-scale diamond tips on a diamond/Si substrate were measured. The nano-scale diamond tips act as a nano-scale “fin structure”, which may provide extended surface area to dissipate heat away. A concept of “quasi thermal resistance” is developed to characterize the thermal spreading properties of the nano-scale diamond tips/diamond/Si structures at various air flow rates in a wind tunnel. Experimental results indicate that nano-scale diamond tips help to improve the thermal spreading properties, especially at zero air flow rate. At an air flow rate higher than zero, the nano-scale diamond tips slightly effect on improving heat spreading property since the air flow would be limited among nano-scale diamond tips and the extended surface area would be neglected. When nano-scale diamond tips are deposited on the diamond/Si substrate, the quasi thermal resistances are reduced further by ~7.3 % at 0 CFM, ~2 % at 3 CFM and ~1 % at 6 CFM.
    Diamond nanotips with high aspect ratio can be synthesized on the diamond/Si substrates by planar microwave plasma enhanced chemical vapor deposition. The field emitter made of the as-grown diamond nanotips suffers with high turn-on voltage and low emission current density. A nitrogen PIII treatment can improve the field emission properties. A low turn-on field of 3 V/um and a high current density of 4 mA/cm2 at 9 V/um are achieved.
    Vertically oriented nano-scale diamond tips were synthesized on the micro-size diamond particles in a planar microwave plasma enhanced chemical vapor deposition chamber by varying synthesis time, bias voltage, and gas ratio. The optimum bias voltage to achieve nano-scale diamond tips and the density of nano-scale diamond tips can be tuned primarily by varying the gas ratio of Ar/CH4/H2.
    The quasi thermal resistances of both micron-size and nano-size diamond structures were determined at various flow rates in a wind tunnel. Experimental results indicate that micron-size diamond is much more effective in heat dissipation than nano-size diamond. With 350-420 um diamond particles on top of the aluminum plate, the quasi thermal resistance reduces by 13 % independent of air flow rate. The reduction of quasi thermal resistance is attributed to the increase of the uncovered diamond surface area. Diamond particles act as a fin structure in the design of a heat spreader. Experimental results support that nano-size diamond structures play no role in the reduction of quasi thermal resistance at various air flow rates. No heat dissipation is contributed from the nanoscale channels among nano-size diamond structures.
    In appendix A, Carbon nanosheets were success to grow uniformly on flat Si and pyramidal Si in a plasma-enhanced chemical vapor deposition process. By replacing flat Si(100) by pyramidal Si(100) as the substrate, the field emission performance of carbon nanosheets was greatly improved. A low turn-on field of 3.2 V/um and a high current density of 2.5 mA/cm2 at 7.0 V/um were achieved for the field emitter of carbon nanosheets/pyramidal Si(100). The enhancement factor β increases from ~4400 to ~9500 at low electric field when carbon nanosheets are synthesized on pyramid Si(100) rather than flat Si(100).

    Contents Abstract (Chinese) Abstract (English) Acknowledgements (Chinese) Contents List of Tables List of Figures Chapter 1 Introduction 1-1 Motivations and objectives 1-1-1 the synthesis of nanoscale diamond tips on diamond/Si and diamond particles/Al 1-1-2 Heat spreading properties of nanoscale diamond tips on diamond/Si and diamond particles/Al 1-1-3 Field emission application of nanoscale diamond tips1-2 Organization of the thesis References Chapter 2 Background study and literature review 2-1 Synthesis of diamond at low pressure 2-1-1 Chemical vapor deposition 2-1-2 Plasma enhanced chemical vapor deposition 2-2 Characteristics of diamond 2-2-1 Mechanical properties 2-2-1-1 Hardness 2-2-1-2 Young’s Modulus 2-2-2 Thermal properties 2-2-2-1 Thermal conductivity 2-2-2-2 Heat Capacity 2-2-2-3 Thermal expansion 2-2-3 Electrical properties 2-2-4 Optical properties 2-2-5 Raman 2-2-6 Field emission 2-3 One-dimensional diamond nano-strctures References Chapter 3 Experimental procedures 3-1 Experimental flow chart 3-2 planar microwave plasma enhanced chemical vapor deposition system (planar-MPECVD) 3-3 Diamond nanotips (DNTs) synthesis procedures 3-4 Field emission scanning electron microscope (SEM) 3-5 High Resolution transmission electron microscope (TEM) 3-6 Micro-Raman system 3-7 Thermal detection system 3-8 X-ray photoemission spectroscopy (XPS) 3-9 Scanning Auger nanoprobe (AES) 3-10 Field emission measurement References Chapter 4 Synthesis of diamond nanotips on diamond film/Si 4-1 Introduction 4-2 Experimental 4-3 Results and discussion 4-4 Conclusions References Chapter 5 Thermal spreading properties of diamond nano-tips on diamond film/Si 5-1 Introduction 5-2 Experimental 5-3 Results and Discussion 5-4 Conclusions References Chapter 6 Field emission properties of diamond nanotips on diamond film/Si treated by nitrogen plasma immersion ion implantation 6-1 Introduction 6-2 Experimental 6-3 Results and discussion 6-4 Conclusions References Chapter 7 Synthesis of nano-scale diamond tips on micro-size diamond particles/Ni/Al 7-1 Introduction 7-2 Experimental 7-3 Results and discussion 7-4 Conclusions References Chapter 8 Thermal spreading properties of nano- and micro-size diamond on Al 8-1 Introduction 8-2 Experimental 8-3 Results and discussion 8-4 Conclusions References Chapter 9 Conclusions Appendix A. Field emission from carbon nanosheets on pyramidal Si(100) A-1 Introduction A-2 Experimental A-3 Results and discussion A-4 Conclusions References

    Ch1.
    [1] Dubrovinskaia N,Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
    [2] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
    [3] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923.
    [4] Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I and Rao T N, et al. 2001 Adv. Mater. 13 247
    [5] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y and Bello I, et al. 2003 Appl. Phys. Lett. 83 3365
    [6] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [7] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [8] Wang Q, Li J J, Jin A Z, Wang Z L, Xu P and Gu C Z 2006 Diamond Relat. Mater. 15 866
    [9] Lin C R and Kuo C T 1998 Diamond Relat. Mater. 7 903
    [10] Tsubota T, Tanii S, Ishida T, Nagata M and Matsumoto Y 2005 Diamond Relat. Mater.14 608
    [11] Brown W D, Beera R A, Naseem H A and Malshe A P 1996 Surface and Coatings Technology 86-87 698
    [12] Incropera F P and Dewitt D P 1996 Fundamentals of Heat and Mass Transfer (New York: Wiley 4th ed)
    [13] Graebner J E, Jin S, Kammlott G W, Herb J A and Gardinier C F 1992 Nature 359 401
    [14] Gray K J 2000 Diamond Relat. Mater. 9 201
    [15] Jagannadham K 1998 Solid-State Electronics 42 2199
    [16] Krainsky I L and Asnin V M 1998 Appl. Phys. Lett. 72 2574
    [17] Okano K, Hoshina K, Iida M, Koizumi S and Inuzuka T 1994 Appl. Phys. Lett. 64 2742
    [18] Li J J, Zheng W T, Gu C Z, Jin Z S, Gu G R, Mei X X, Mu Z X and Dong C 2005 Appl. Phys. A 81 357
    [19] Geis M W, Twichell J C, Efremow N N, Krohn K and Lyszczarz T M 1996
    Appl. Phys. Lett. 68 2294
    [20] Okano K, Koizumi S, Silva S R P and Amaratunga G A J 1996 Nature 381 140
    ch2.
    [1] Lee S T, Lin Z and Jiang X 1999 Mater. Sci. Eng. R 25 123
    [2] Bachmann P K and Messier R 1989 C&EN 67 24
    [3] Van Der Drift A. Evolutionary selection, a principle governing growth
    orientation in vapour-deposited layers. Philips Research Reports.
    1967;22: 267–288
    [4] Eversole W G, Synthesis of diamond, U. S. Patent, 3,030,188 (April 17,
    1962)
    [5] May P W, “ Diamond thin film: a 21st-century material”, phil. Trans. R. Soc. Lond. A, 2000, 358
    [6] Eversole W G, ‘’Synthesis of diamond’’, U. S. Patent 3 188 1962
    [7] Angus J C, Will H A and Stanko W S 1968 J. Appl. Phys. 39 2915
    [8] Matsumoto S, Sato Y, Kamo M and Setaka N 1982 Jpn. J. Appl. Phys. 21 L183
    [9] Singh R K, Gilbert D, Tellshow R, Holloway P H, Ochoa R, Simmons J H and Koba R 1992 Appl. Phys. Lett 61 2863
    [10] Zhang G F and Buck V 1999 Diamond Relat. Mater. 8 2148
    [11] Zhang W J and Jiang X 1999 Thin Solid Film 348 84
    [12] Rudder R A, Hudson G C, Posthill J B, Thomas R E and Markunas R J 1991 Appl. Phys. Lett. 59 791
    [13] Teii K and Yosshida T 1999 J. Appl. Phys. 85 1864
    [14] Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications”, Noyes Publications, Park Ridge, New Jersey, 1992
    [15] Bachmann P K, in Thin Film Diamond, edited by Lettington A and Steeds J W (Champman & Hall, London, 1994) P.31-53
    [16] The Properties of Diamond, FIELD, J. E., Academic Press, London (1979)
    [17] http://www.chm.bris.ac.uk/motm/diamond/diamprop.htm
    [18] Robert F. Davis, Diamond films and coatings: development, properties, and applications, Noyes, New Jersey, 1993
    [19] Shackelford J F, Introduction to Materials Science for Engineers, Pearson Prentice Hall, New Jersey
    [20] George E, and Bacon D, Mechanical Metallurgy, McGraw-Hill, London, 1988, p.49
    [21] Ferraro J R and Nakamoto K, Introduction Raman Spectroscopy (Academic press, UK) 1994
    [22] Robertson J 2002 Mater. Sci. Eng. R. 37, 246
    [23] Temple D 1999 Mater. Sci. and Eng. R24 185
    [24] Sze S M, Physics of Semiconductor Devices, Wiley, New York (1981)
    [25] Brodie I and Schwoebel P R, Proceedings of the IEEE 82, 1005 (1994)
    [26] Fowler R H, Nordeim L W, Proc. R. Soc. London Ser. A 119, 173 (1928)
    [27] Himpsel F J, Knapp J A, Van Vechten J A, and Eastman D E 1979 Phys.Rev. B 20 624
    [28] Liu J, Zhirnov V V, Myers A F, Wojak G J, Choi W B, Hren J J, Wolter S D, McClure M T, Stoner B R, and Glass J T 1995 J. Vac. Sci. Technol. B 13 422
    [29] Okano K, Koizumi S, Silva S R P, and Amaratunga G A J 1996 Nature 381 140
    [30] Talin A A, Pan L S, McCarty K F, Felter T E, Doerr H J and Bunshah R F 1996 Appl. Phys. Lett. 69 3842
    [31] Shiomi H 1997 Jpn. J. Appl. Phys. 36 7745
    [32] Zhu W; Kochanski G P; Jin S 1998 Science, New Series, Vol. 282, No. 5393. (Nov. 20,) 1471-1473
    [33] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y, and Lee S T 2003 Appl. Phys. Lett. 83 3365
    [34] Xiao X, Auciello O, Cui H, Lowndes D H, Merkulov V L and Carlisle J 2006 Diamond & Related Materials 15 244
    [35] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923
    [36] Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I, Rao T N and Fijishima A 2001 Adv. Mater. 13, 247
    [37] Yanagishita T, Nishio K, Nakao M, Fujishima A and Masuda H 2002 Chem. Lett. 10 976
    [38] Okuyama S, Matsushita S I and Fujishima A 2002 Langmuir 18 8282
    [39] Kobashi K, Tachibana T, Yokota Y, Kawakami N, Hayashi K, Yamamoto K, Koga Y, Fujiwara S, Gotoh Y, Nakahara H, Tsuji H, Ishikawa J, Franz A. Ko¨ck and Robert J N 2003 J. Mater. Res. 18 305
    [40] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y, Bello I, Lifshitz Y and Lee S T 2003 Appl. Phys. Lett. 83 3365
    [41] Chih Y. K., Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [42] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [43] Ando Y, Nishibayashi Y and Sawabe A 2004 Diamond Relat. Mater. 13 633
    [44] Yang Q, Hamilton T, Xiao C, Hirose A and Moewes A 2006 Thin Solid Films 494 110
    [45] Wang Q, Wang Z L, Li J J, Huang Y, Li Y L, Gu C Z, and Cui Z 2006 Appl. Phys. Lett. 89 063105
    [46] Wang Q, Li J J, Jin A Z, Wang Z L, Xu P and Gu C Z 2006 Diamond & Related Materials 15 866
    [47] Frank W, Sebastian F, Hans G B, Christof D, Berndt K, Alfred P, Oliver P, Paul Z, Paul W, Christoph H, Marcel O and Martin M 2006 Diamond & Related Materials 15 1689
    [48] Subramanian K, Kang W P, Davidson J L, Takalkar R S, Choi B K, Howell M and Kerns D V. 2006 Diamond & Related Materials 15 1126
    [49] Wang Z L, Luo Q, Li J J, Wang Q, Xu P, Cui Z and Gu C Z 2006 Diamond & Related Materials 15 631
    [50] Sun L T, Gong J L, Zhu D Z, Zhu Z Y and He S X 2004 Adv. Mater. 16 1849
    [51] Sun L T, Gong J L, Zhu Z Y, Zhu D Z, He S X, Wang Z X, Chen Y and Hu G 2004 Appl. Phys. Lett. 84 2901
    ch3.
    [1] Wu T J and Kou C S 1999 Rev. Sci. Instrum. 70 2331
    [2] Yen K S, in “Study of hexgonal hillocks on AlxGa1-x thin film“, (NTCU, MA thesis, 2004), p.31
    ch4.
    [1] Dubrovinskaia N,Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
    [2] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
    [3] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923.
    [4] Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I and Rao T N, et al. 2001 Adv. Mater. 13 247
    [5] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y and Bello I, et al. 2003 Appl. Phys. Lett. 83 3365
    [6] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [7] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [8] Wang Q, Li J J, Jin A Z, Wang Z L, Xu P and Gu C Z 2006 Diamond Relat. Mater. 15 866
    [9] Wu T J and Kou C S 1999 Rev. Sci. Instrum. 70 2331
    [10] Shroder R E, Nemanich R J and Glass J T 1990 Phys. Rev. B 41 3738
    [11] Bonnot A M 1990 Phys. Rev. B 41 6040
    [12] Robertson J 2002 Mater. Sci. Eng. R. 37 129
    [13] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    ch5.
    [1] Jagannadham K 1998 Solid-State Electronics 42 2199
    [2] Brown W D, Beera R A, Naseem H A and Malshe A P 1996 Surface and Coatings Technology 86-87 698
    [3] Incropera F P and Dewitt D P 1996 Fundamentals of Heat and Mass Transfer (New York: Wiley 4th ed)
    [4] Graebner J E, Jin S, Kammlott G W, Herb J A and Gardinier C F 1992 Nature 359 401
    [5] Gray K J 2000 Diamond Relat. Mater. 9 201
    [6] Dubin V M 2003 Microelectronic Engineering 70 461
    [7] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [8] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [9] Wu T J and Kou C S 1999 Rev. Sci. Instrum. 70 2331
    [10] Edington J W 1974 Monographs in Practical Electron Microscopy in Materials Science (East Kilbride: Philips)
    [11] Ohring M 1992 The materials science of thin films (Boston: Academic Press) p.53
    ch6.
    [1] Krainsky I L and Asnin V M 1998 Appl. Phys. Lett. 72 2574
    [2] Okano K, Hoshina K, Iida M, Koizumi S and Inuzuka T 1994 Appl. Phys. Lett. 64 2742
    [3] Li J J, Zheng W T, Gu C Z, Jin Z S, Gu G R, Mei X X, Mu Z X and Dong C 2005 Appl. Phys. A 81 357
    [4] Geis M W, Twichell J C, Efremow N N, Krohn K and Lyszczarz T M 1996
    Appl. Phys. Lett. 68 2294
    [5] Okano K, Koizumi S, Silva S R P and Amaratunga G A J 1996 Nature 381 140
    [6] Talin A A, Pan L S, McCarty K F, Felter T E, Doerr H J and Bunshah R F 1996 Appl. Phys. Lett. 69 3842
    [7] Lacher F, Wild C, Behr D and Koidl P1997 Diamond Relat. Mater 6 1111
    [8] Wei C H, Chen C H, Yen C M, Chen M Y, Hwang J, Lee A P and Kou C S 2005 J. Eelectrochem. Soc. 152 C366
    [9] Tanemura M, Tanaka J, Itoh K, Fujimoto Y, Agawa Y, Miao L and Tanemura S 2005 Appl. Phys. Lett. 86 113107
    [10] De Heer W A, Chatelain A and Ugarte D 1995 Science 270 1179
    [11] Bonard J M, Kind H, Stockli T and Nilsson L O 2001 solid state electronic 45 893
    [12] Jung M S, Ko Y K, Jung D H, Choi D H, Jung H T, Heo J N, Sohn B H, Jin Y W and Kim J 2005 Appl. Phys. Lett. 87 013114
    [13] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [14] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [15] Wu T J and Kou C S 1999 Rev. Sci. Instrum. 70 2331
    [16] Shroder R E, Nemanich R J and Glass J T 1990 Phys. Rev. B 41 3738
    [17] Bonnot A M 1990 Phys. Rev. B 41 6040
    [18] Robertson J 2002 Mater. Sci. Eng. R. 37 129
    [19] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    [20] Edington J W 1974 Monographs in Practical Electron Microscopy in Materials Science (Philips: East Kilbride)
    [21] Chih Y K, Chueh Y L, Chen C H, Hwang J, Chou L J and Kou C S 2006 Diamond Relat. Mater. 15 1246
    [22] Freire F L and Franceschini D F 1997 Thin Solid Films 293 236
    [23] Glerup M, Castignolles M, Holzinger M, Hug G, Loiseau A and Bernier P 2003 CHEM. COMMUN. 2542
    ch7.
    [1] Dubrovinskaia N,Dub S and Dubrovinsky L 2006 Nano Lett. 6 824
    [2] Padgett C W, Shenderova O and Brenner D W 2006 Nano Lett. 6 1827
    [3] Baik E S and Baik Y J 2000 J. Mater. Res. 15 923.
    [4] Masuda H, Yanagishita T, Yasui K, Nishio K, Yagi I and Rao T N, et al. 2001 Adv. Mater. 13 247
    [5] Zhang W J, Wu Y, Wong W K, Meng X M, Chan C Y and Bello I, et al. 2003 Appl. Phys. Lett. 83 3365
    [6] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat. Mater. 13 1614
    [7] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S 2005 J. Crystal Growth 283 367
    [8] Wang Q, Li J J, Jin A Z, Wang Z L, Xu P and Gu C Z 2006 Diamond Relat. Mater. 15 866
    [9] Lin C R and Kuo C T 1998 Diamond Relat. Mater. 7 903
    [10] Tsubota T, Tanii S, Ishida T, Nagata M and Matsumoto Y 2005 Diamond Relat. Mater.14 608
    [11] Wu T and Kou C S 1999 Rev. Sci. Instrum. 70 2331
    [12] Shroder R E, Nemanich R J and Glass J T 1990 Phys. Rev. B 41 3738
    [13] Bonnot A M 1990 Phys. Rev. B 41 6040
    [14] Robertson J 2002 Mater. Sci. Eng. R. 37 129
    [15] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
    ch8.
    [1] Eden R C 1993 Diamond Relat Mater 2 1051
    [2] Andreazza P, De Barros M I, Andreazza V C, Rats D and Vandenbulcke L 1998 Thin Solid Films 319 62
    [3] Fu Y Q, Yan B and Loh N L. 2000 Surf Coat Technol 130 173
    [4] Kuznetsov V L, Chuvilin A L, Moroz E M, Kolomiichuk V N, Shaikhutdinov S K and Butenko Y V, et al. 1994 Carbon 32 873
    [5] Kuznetsov V L, Aleksandrov M N, Zagoruiko I V, Chuvilin A L, Moroz E M and Kolomiichuk V N, et al. 1991 Carbon 29 665
    [6] Lin C R and Kuo C T 1998 Diamond Relat Mater 7 903
    [7] Tsubota T, Tanii S, Ishida T, Nagata M and Matsumoto Y. 2005 Diamond Relat Mater 14 608
    [8] Chih Y K, Chen C H, Hwang J, Lee A P and Kou C S 2004 Diamond Relat Mater 13 1614
    [9] Chih Y K, Hwang J, Chueh Y L, Chou L J, Lee A P and Kou C S. 2005 J Crystal Growth 283 367
    [10] Wu T and Kou C S. 1999 Rev Sci Instrum 70 2331
    [11] Shroder R E, Nemanich R J and Glass J T. 1990 Phys Rev B 41 3738
    [12] Bonnot A M 1990 Phys Rev B 41 6040
    [13] Robertson J 2002 Mater Sci Eng R 37 129
    [14] Ferrari A C and Robertson J 2000 Phys Rev B 6114095
    [15] Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y and Fujimori N 1997 Diamond Relat Mater 6 1057
    [16] Hanada K, Matsuzaki K and Sano T 2004 J Mater Proce Tech 153 514
    [17] Liu W L, Shamsa M, Calizo I, Balandin A A, Ralchenko V, Popovich A and Saveliev A 2006 Appl Phys Lett 89 171915
    [18] Ohring M 1992 The materials science of thin films (Boston: Academic Press) p.53

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE