研究生: |
楊子昆 |
---|---|
論文名稱: |
ㄧ個非等溫擴散反應模型的分支點計算及其解路徑延拓 The Continuation of Solution Paths And The Computation of Branching Points of A Non-Isothermal Diffusion And Reaction Model |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
中文關鍵詞: | 牛頓迭代法 、隱函數定理 、打靶法 、虛擬弧長延拓法 、切線猜測法 、割線猜測法 、解分支 、分歧點 、轉彎點 |
外文關鍵詞: | Newton's interative method, Liapunov-Schmidt reduction method, Shooting method, Pseudo-arclength continuation method, Tangent-predictor method, Secant-predictor method, Soltion branches, Bifurcation points, Turning points |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本篇論文主要在探討ㄧ個非等溫擴散反應模型的分支點計算及其解路徑延拓的特性﹒
我們將以隱函數定理為基礎﹐利用打靶法和牛頓迭代法來計算出分歧點或轉彎點.接著使用Liapunov-schmidt降階法﹑切線猜測法﹑割線猜測法和虛擬弧長延拓法等數值方法﹐來找出我們的模型在各參數有限範圍內之解路徑情形﹐並試著改變各參數進而延拓出通過分支點的解分支路徑﹒
Abstract
This paper mainly discuss the continuation of solution paths and the computation of branching points of non-isothermal diffusion and reaction model.
We use the implicit function theorem as the foundations,and use the shooting method and the Newton's interative method to calculate bifurcation points or turning points. Also, we use the numerical methods of liapunov-schmidt reduction method,tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to find out the multiple solutions within limited range of parameters. Finally, we try to change various parameters to continue all Solution branches from Bifurcation points.
參考文獻
[1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation
for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7,
pp.1265-1281, 1986.
[2] Aselone, P. M. and Moore, R. H., An Extension of the
Newton-Kantorovich Method for Sloving Nonlinear Equations with
An Application to Elasticity. J. Math. Anal., 13, pp. 476-501, 1966.
[3] Bauer,L.,Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres,Comm. Pure Appl.Math., 23, pp.529-568,1970.
[4] Collatz, E.A and Levinson, N., funktionalanalysis and Numerische Mathematik, Springer-Verlag, Berlin,1964.
[5] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of
Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press,
New York, 1977.
[6] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple
eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[7] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of
Bifurcation, Bifurcation Phenomena in Mathematical Physics and
Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced
Study Institute Series, 1979.
[8] C.-S. Chien and S.-L. Chang, 2003(10), Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems, Numer. Linear Algebra Appl., pp.335-355.
[9] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation
Problems, State of the Art in Numerical Analysis, edit bu A. Iserles,
MJD Powe11, 1987.
[10] J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in Several Variables.Academic press.New York London,1970.
[11] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By
C. de Boor and G.H. Golub, Academic Press, New York, p.73, 1978.
[12] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation
Theory and Dissipative Structures, Springer-Verlag, New York,1983.
[13] Kupper, T., Mittelmann, H.D. and Weber, H. (eds.), Numerical Mehods for Bifurcation Problems, Birkhauser, Basel,1984.
[14] Lazer,A.C., and Mckenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare:Analyse non Lin’ eaire 4(3),pp.243-274,1987.
[15] M. G. Grandal, An introduction to constructive aspects of bifurcation and implicit function theorem in Applications of Bifurcation Theory, (T. H. Rabinowitz, Ed.) Academic, New York,1977.
[16] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Joural of Functional Analysis 8, pp.321-340,1971.
[17] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for
algebraic and nonlinear boundary value problems, Appl. Math.
Comput, 1979.
[18] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and
Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,
1980.
[19] Shivaji,R., Uniqueness Result for a Class of Postione problems,Nonlinear Analysis: Theory, Methods and Application, 7,pp.223-230,1983.
[20] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,
1978.