簡易檢索 / 詳目顯示

研究生: 楊健鑫
Chan-Hsin Yang
論文名稱: 以流動觸媒法合成單層奈米碳管及雙層奈米碳管之製程研究
Synthesis of single walled carbon nanotubes and double walled carbon nanotubes through the floating catalyst method
指導教授: 戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 260
中文關鍵詞: 奈米碳管單層奈米碳管雙層奈米碳管流動觸媒法
外文關鍵詞: carbon nanotubes, single walled carbon nanotubes, double walled carbon nanotubes, the floating catalyst method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以化學氣相沈積法中的流動觸媒法(the floating catalyst method )來合成奈米碳管。流動觸媒法主要是將金屬化合物催化劑揮發後與碳氫化合物的蒸氣混合,經高溫熱裂解1373K到1473K反應形成奈米碳管。利用此製程並加以參數的控制,可以生產出高純度的雙層奈米碳管及單層奈米碳管,其產量可達每十分鐘七十毫克,這也意指此方法具有潛力,可發展量產高純度奈米碳管的製程。本研究所製造的奈米碳管分別作場發式掃描電子顯微鏡、高解析穿透式電子顯微鏡及拉曼光譜分析以判定其奈米結構。


    In this study, the floating catalyst method was adopted to synthesize carbon nanotubes (CNTs). High purity single walled and double walled carbon nanotubes were obtained by pyrolyzing the hydrocarbon gas in the temperature range of 1373 K and 1473 K. By proper selecting the parameter, a high product rate up to 70mg/10mins can be achieved. The high productivity implies that this method has the potential to further develope a mass production route for fabricating high quality CNTs. In this work, the effects of catalyst precursor, temperature, pressure, and promoter/hydrocarbon mole ratio on the synthesis of CNTs are discussed. Furthermore Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM) and Micro-Raman system were used to examine the microstructure of the fabricated CNTs.

    摘要……………………………………………………………………..一 總目錄…………………………………………………………………..三 圖表目錄………………………………………………………………..六 第一章 緒論…………………………………………………………....1 1.1 奈米碳管的歷史與簡介…………………………………………...2 1.2 奈米碳管的結構…………………………………………………...4 1.3 奈米碳管的製程…………………………………………………….5 1.3.1 電弧放電法……………………………………………………….5 1.3.2 雷射熱昇華法…………………………………………………….7 1.3.3 化學氣相沉積法………………………………………………….7 1.4 奈米碳管的應用…………………………………………………….8 1.4.1 奈米碳管溫度計………………………………………………….8 1.4.2 奈米碳管電晶體………………………………………………….9 1.4.3 奈米碳管輸送帶…………………………………………………10 1.4.4 奈米碳管燈泡……………………………………………………11 1.4.5 奈米碳管毒氣探測器……………………………………………12 1.4.6 主動式奈米碳管發光元件………………………………………12 1.4.7 外控式奈米碳管開關及感應元件………………………………13 1.4.8 奈米碳管磁化現象應用…………………………………………14 1.4.9 奈米碳管電動轉子………………………………………………15 1.4.10 分離金屬與半導體電性奈米碳管…………………………….16 1.4.11 奈米碳管單電子反相器……………………………………….17 1.4.12 積體電路的奈米碳管連接線………………………………….18 1.4.13 奈米碳管電開關……………………………………………….20 第二章 文獻回顧………………………………………………………29 2.1 化學氣相沉積法製造奈米碳管…………………………………..29 2.1.1 化學氣相沉積流動觸媒法………………………………………29 2.1.2 化學氣相沉積法製作單層奈米碳管……………………………30 2.2 利用沸石製造最細的單層奈米碳管……………………………..34 2.3 快速加熱技術製造超長單層奈米碳管…………………………..35 2.4 奈米碳管克服長度的限制………………………………………..36 第三章 研究方法與實驗步驟…………………………………………48 3.1 研究方法…………………………………………………………..48 3.2 實驗步驟…………………………………………………………..50 3.2.1 CVD流動觸媒法製備單層及多層奈米碳管……………………50 3.2.2 單層奈米碳管純化………………………………………………52 3.3 奈米碳管的結構分析……………………………………………..53 3.3.1奈米碳管的電子顯微鏡分析…………………………………….53 3.3.2奈米碳管的拉曼光譜分析……………………………………….54 第四章 結果與討論……………………………………………………57 4.1 以CVD流動觸媒法製備多層奈米碳管………………………….57 4.2 以CVD流動觸媒法製備單層奈米碳管………………………….59 4.2.1 觸媒對成長奈米碳管的影響……………………………………59 4.2.2 氣體流量與壓力對成長奈米碳管的影響………………………61 4.2.3 促進劑對成長奈米碳管的影響…………………………………63 4.2.4 反應溫度對成長奈米碳管的影響………………………………70 4.3 以不同碳源試作單層奈米碳管…………………………………..74 4.3.1 以xylene為碳源製備單層奈米碳管……………………………74 4.3.2 以toluene為碳源製備單層奈米碳管………………………….76 4.3.3 以cyclohexane為碳源製備單層奈米碳管…………………….77 4.4 單層奈米碳管的純化……………………………………………..78 第五章 結論…………………………………………………………..249 第六章 參考文獻……………………………………………………..251

    1. M. S. Dresselhaus, G. Dresselhaus,and P. C. Eklund, Science of
    Fullerenes and Carbon Nanotubes, Academic Press (1995).
    2. J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
    3. H. W. Kroto, J. R. Heath, S. C. O`Brien, R. F. Curl, and R. E. Smalley, C60 buckminsterfullerence, Nature 318, 162 (1985).
    4. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, Physics of carbon nanotubes, Carbon, 33, 883 (1995).
    5. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56 (1991).
    6. Rice University: Rick Smalley’s Group Home Page Image Gallery.
    7. Carbon Nanotubes and Related Structures-new materials for the twenty-first century , Peter J. F. Harris, Department of Chemisty,Universityof Reading.
    8. Yahachi Saito, Sashiro Uemura, Field emission from carbon nanotubes and its application to electron sources, Carbon, 38, 169 (2000).
    9. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett., 243, 49, (1995).
    10.A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Controlling single-wall nanotube diameters with variation in laser pulse power, Chem. Phys. Lett., 316, 13 (2000).
    11.Lijie Ci, Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 39, 329 (2001).
    12.H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, Large-scale and low-cost synthesis of single walled carbon nanotubes, Appl. Phys. Lett., 72, 3282 (1998).
    13.Chris Bower, Wei Zhu, Sungho Jin and Otto Zhou, Plasma-induced alignment of carbon n.anotubes, Appl. Phys. Lett., 77, 830 (2000).
    14.M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 77, 3468 (2000).
    15.Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition, Appl. Phys. Lett., 73, 3845 (1998).
    16.M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, 678 (1996).
    17.M. R. Falvo, G. J. Clary, R. M. Taylor, V. Chi, F. P. Brooks, S. Washburn and R.Superfine, Bending and buckling of carbon nanotubes under large strain, Nature,389, 582 (1997).
    18.A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, Unraveling nanotubes: field emission from an atomic wire, Science, 269, 1550 (1995).
    19.W. A. de Heer, A. Chatelain, and D. Ugarte, A carbon nanotube field-emission electron source, Science, 270, 1179 (1995).
    20.H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, 147 (1996).
    21.S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature, 394, 52 (1998).
    22.B. I. Yakobson and R. E. Smalley, Fullerene nanotubes: C1,000,000 and beyond, American Scientist, 85, 324 (1997).
    23.P. Calvert, Strength in disunity, Nature, 357, 356 (1992).
    24.L. Jin, C. Bower, and O.Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching, Appl. Phys. Lett., 73 (9), 1197 (1998).
    25.Y. Y. Wei, X. Fan, and Gyula Eres, Directed assembly of carbon nanotube electronic circuits by selective area chemical vapor deposition on prepatterned catalyst electrode structures, J. Vac. Sci. Technol. B, 18, 3586 (2000).
    26.F. Okuyama, T. Hayashi, and Y. Fujimoto, Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes, J. Appl. Phys., 84,3,1626 (1998).
    27.A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and R. P. H. Chang, A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires, Appl. Phys. Lett. 69 (3), 345 (1996).
    28.Chunming Niu, Enid K. Sichel, Robert Hoch, David Moy, and Howard Tennent, High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett., 70 (11), 1480 (1997).
    29.E. Frackowiak, K. Metenier, V. Bertagna, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 77 , 2421 (2000).
    30.Sander J. Tans, Alwin R. M. Verschueren and Cees Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, 393, 49 (1998).
    31.R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, Single and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett.,73 (17), 2447 (1998).
    32.Ph. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Sur. Sci., 141, 201 (1999).
    33.M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys. Lett., 77 (24), 4037 (2000).
    34.Zhen Yao, Henk W. Ch. Postma, Leon Balents and Cees Dekker, Carbon nanotube intramolecular junctions, Nature, 402, 273 (1999).
    35.A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature, 386, 377(1997).
    36. Seung Mi Lee and Young Hee Lee, Hydrogen storage in single walled carbon nanotubes, Appl. Phys. Lett., 76 (20), 2877 (2000).
    37.Yan Chen, David T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , Hydrogen storage in aligned carbon nanotubes, Appl. Phys. Lett.,78 ,2128 (2001).
    38.Wang Qikun, Zhu Changchun, Liu Weihua, Hydrogen storage by carbon nanotube and their films under ambient pressure, nInternational Journal of Hydrogen Energy, 27, 497 (2002).
    39.Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher and Charles R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature,393, 346 (1998).
    40.B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett., 307, 153 (1999).
    41.H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, Lithium intercalation into etched single-wall carbon nanotubes, Physica B, 323, 133 (2002).
    42.Yihua Gao, Yoshio Bando, Zongwen Liu, and Dmitri Golberg, Temperature measurement using a gallium-filled carbon nanotube nanothermometer, Appl. Phys. Lett., October 2003 Vol. 83,2913.
    43.Shengdong Li,Zhen Yu,Sheng-Feng Yen, W. C. Tang, and Peter J. Burke,Carbon Nanotube Transistor Operation at 2.6 GHz, Nano Lett., Vol. 4, No. 4 (2004) 753.
    44.B.C. Regan, S. Aloni, R.O. Ritchie, U. Dahmen, and A. Zettl, Carbon nanotubes as nanoscale mass conveyors, Nature 428 924-927 (2004).
    45. Jinquan Wei, Hongwei Zhu, and Dehai Wu, Carbon nanotube filaments in household light bulbs,Appl. Phys. Lett. June 2004, Vol 84. 4869.
    46.J. P. Novak, E. S. Snow,E. J. Houser, D. Park, J. L. Stepnowski, and R. A.McGill, Nerve agent detection using networks of single walled carbon nanotubes, Appl. Phys. Lett.(2003).vol.83, 4026.
    47. J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, J. Tersoff, Electrically Induced Optical Emission from a Carbon Nanotube FET,science vol 300,783,2 MAY 2003.
    48. Ingo Dieking, G. scalia, P. Morales, D. Le Clere, Aligning and Reorienting Carbon Nanotubes with Nematic Liquid Crystals, Adv. mater.2004.16.865 .No 11. June 4.
    49. O C´espedes, M S Ferreira, S. Sanvito, M. Kociak and J. M. D Coey, Contact induced magnetism in carbon nanotubes, Matter 16 (2004) L155–L161.
    50. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M.S.Fuhrer, J. Cumings & A. Zettl, Rotational actuators based on CNTs, nature vol 424.P408.24 JULY 2003.
    51.Ralph Krupke,Frank Hennrich, Hilbert v. Lo hneysen, Manfred M. Kappes, Separation of Metallic from Semiconducting Single Walled Carbon Nanotubes, nature vol 301.344.18 JULY 2003.
    52. K.Ishibashi, D.Tsuya, M.Suzuki, Y.Aoyagi, Fabrication of a single electron inverter in multiwall carbon nanotubes, Appl. Phys. Lett. Vol.82, 3307, No.19, 12 May 2003.
    53.Jun Li, Qi Ye, Alan Cassell, Hou Tee Ng, Ramsey Stevens, Jie Han,and M. Meyyappan , Bottom-up approach for carbon nanotube interconnects, Applied Physics Letters 82, 2491 (2003).
    54. E. D. Minot et. al, Tuning Carbon Nanotube Band Gaps with Strain, Phys. Rev. Lett. 90, 156401 (2003).
    55.Lijie Ci , Jinquan Wei, Bingqing Wei, Ji Liang, Cailu Xu and Dehai Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 39, 329 (2001).
    56.R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ru hle, Y. A. Kim, T. Hayashi, and M. Endo, Synthesis of thick and crystalline nanotube arrays by spray pyrolysis, Appl. Phys. Lett., 77 (24), 3385 (2000).
    57.Xianfeng Zhang, Anyuan Cao, Bingqing Wei, Yanhui Li, Jinquan Wei, Cailu Xu and Dehai Wu, Rapid growth of well-aligned carbon nanotube arrays, Chem. Phys. Lett., 362, 285 (2002).
    58.R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey and J. Chen, , Continuous production of aligned carbon nanotubes a step closer to commercial realization, Chem. Phys. Lett., 303, 467 (1999).
    59. Kong J, Cassell A. M, Dai H. J, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem Phys Lett. (1998) 292: 567.
    60.Cheng H. M, Li F, Sun X, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons, Chem Phys Lett. (1998) 289: 602.
    61. Cheng H. M, Li F, Su G, Sun X, L. L. He, H. Y. Pen, et al. Large scale and low-cost synthesis of single walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Appl Phys Lett. (1998) vol 72, No 25: 3282.
    62. Su M, Zheng B, Liu J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem Phys Lett. (2000) 322: 321.
    63. F. Colomer, Piedigrosso P. Fonseca A. et al. Different purification methods of carbon nanotubes produced by catalytic synthesis, Synth Meta. (1999) 103: 2482.
    64. J. F. Colomer, Different purification methods of carbon nanotubes produced by catalytic synthesis, Chem Phys Lett. (2000) 317: 83.
    65.Nikolaev P, Bronikowski M. J, Bradly R K.et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem Phys Lett. (1999) 313: 91.
    66.Takuya Hayashi, Yoong Ahm Kim, Toshiharu Matoba, Masaya Esaka, Kunio Nishimura, Takayuki Tsukada, Morinobu Endo, and Mildred S. Dresselhaus|, Smallest Freestanding Single-Walled Carbon Nanotube, Nano Lett., Vol.3, 887, No.7 (2003).
    67.Huang, S. Cai, X., Liu, J., Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates, J. Am. Chem. Soc. (2003) 125. 19: 5636-5637.
    68.Ya-Li Li, Ian A. Kinloch, Alan H. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis, science vol 304, 276, 9 APRIL (2004).
    69. M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Raman spectroscopy on one isolated carbon nanotube, Carbon 40 (2002) 2043–2061.
    70.成會明編著,奈米碳管,五南圖書出版公司(2004)。
    71. Sciscape 科景, http://www.sciscape.org/.
    72.蔡宗岩「以奈米碳管、碳纖維製備場發射陰極材料並探討電極幾何形狀對場發射特性之影響」,國立清華大學材料科學工程研究所碩士論文,中華民國九十二年六月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE