簡易檢索 / 詳目顯示

研究生: 張嘉允
Chang, Chia-Yun
論文名稱: DNA生物高分子材料開發與其於有機發光元件上的應用
Development of DNA hybrid biomaterial and its application in organic light-emitting devices
指導教授: 洪毓玨
Hung, Yu-Chueh
李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 92
中文關鍵詞: DNADNA-CTMADNA-VBTMADNA-BTMA有機發光二極體OLED
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脫氧核醣核酸 (Deoxyribonucleic acid, DNA) 除了做為生物的遺傳物質,已在許多其他方面得到越來越多的關注。除了傳統上在基因工程方面的探討,尚有作為基本材料於奈米科技方面的研究。由於DNA具有諸多獨特物理及化學性質,作為高分子材料極有潛力應用於光電元件上。本論文即以DNA為原料,進行複合材料的合成,並將其運用於有機發光元件上。
    本研究探討DNA與數種介面活性劑複合的材料製備過程,並進行光電特性的量測。從實驗結果發現,這些DNA複合材料的熱裂解溫度皆達200℃以上,光學穿透度在可見光與近紅外光的範圍可達96%,並且可藉由低成本的旋轉塗佈法於基板上形成均勻的光學薄膜。這些性質皆有利於此DNA複合材料於光電元件上的應用。
    由於DNA材料的能階特性,本研究將其應用於有機發光元件的電子阻擋層。實驗的結果顯示,將DNA複合材料用於多層結構的設計上,可以使有機發光元件相較於沒有DNA複合材料,在1000 mA/cm2下增強52.47%的亮度。此研究同時對材料性質與元件結構進行最佳化,藉由調整DNA的分子量與多層結構各層的厚度,可進而提升元件的效能。


    Deoxyribonucleic acid (DNA), as a genetic substance, has attracted much attention in genetic engineering and in nanotechnology. Due to several unique properties of DNA molecules, it also has high potential to be utilized in photonic devices. In this research, hybrid materials based on natural DNA extracted from Salmon sperm were exploited and were implemented in organic light-emitting devices.
    In the first part of this research, the preparation procedures of DNA hybrid materials, where DNA forms complexes with several surfactants, were described and the optical and electrical properties were characterized. From the experimental results, it shows that DNA hybrid materials have a decomposition temperature above 200℃, high optical transmittance around 96% in 400nm~1100nm. Meanwhile, thin films with good quality can be formed on substrates using spin-coating technique. These properties of DNA hybrid materials are advantageous for photonic devices and exhibit the potential for practical implementation.
    In the second part of this research, DNA hybrid materials were explored in the implementation of organic light-emitting devices where the DNA hybrid material was incorporated as an interlayer for blocking electrons. The experimental results indicate that devices with DNA interlayer show enhanced performance with respect to its counterpart. By varying the material properties and multilayer structures, the device performance can be further optimized.

    Abstract (Chinese).........................................I Abstract (English)........................................II Acknowledgement..........................................III Content...................................................IV List of Figures...........................................VI List of Tables.............................................X Chapter 1 Introduction.....................................1 1.1 Organic photonics: technology overview.................1 1.2 Organic electroluminescence: development, mechanism, and devices................................................4 1.2.1 Development..........................................5 1.2.2 Organic material and device principle................7 1.2.3 Fluorescence and phosphorescence mechanisms.........10 1.2.4 Device mechanism....................................12 1.3 DNA biopolymer for photonic applications..............15 1.3.1 Motivation..........................................16 1.3.2 Literature review...................................17 1.3.3 Current development.................................23 Chapter 2 DNA-surfactant biopolymer: material processing and characterization......................................26 2.1 Preparation of DNA-surfactant complexes...............26 2.2 Optical property......................................31 2.3 Energy level measurement..............................33 2.4 Thermal property......................................34 2.5 Thin film quality.....................................35 2.6 Electrical property...................................36 Chapter 3 DNA organic electroluminescence devices: fabrication and measurements..............................39 3.1 Experimental material.................................39 3.2 Substrate pre-treatment...............................42 3.2.1 Substrate cleaning process..........................42 3.2.2 Anode patterning process............................43 3.3 Device fabrication....................................44 3.3.1 Layer deposition by solution-process................45 3.3.2 Layer deposition by thermal evaporation.............46 3.4 Characterization apparatus............................48 3.4.1 Thickness measurement...............................48 3.4.2 Morphology measurement..............................50 3.4.3 Elemental composition ..............................51 3.4.4 Electrical property measurement.....................51 3.4.5 Electroluminescence spectrum measurement............52 Chapter 4 Results and discussions.........................53 4.1 Characterization of DNA interlayer....................53 4.1.1 Surface roughness...................................53 4.1.2 Thickness verification..............................58 4.2 Results and discussion................................60 4.2.1 Effect of PEDOT:PSS layer on device performance.....61 4.2.2 Varying the thickness of the BCP layer..............69 4.2.3 Role of DNA interlayer..............................72 4.2.4 Varying the number of base pairs of DNA molecule....76 Chapter 5 Conclusion and future work......................81 Reference.................................................83

    [1] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors,” Nature 457, 679–686 (2009).
    [2] S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, “Improved bulk heterojuction organic solar cells employing C70 fullerenes,” Appl. Phys. Lett. 94, 223307-1–3 (2009).
    [3] J. Sakai, T. Taima, T. Yamanari, and K. Saito, “Annealing effect in the sexithiophene:C70 small molecule bulk heterojunction organic photovoltaic cells,” Sol. Energy Mater. Sol. Cell 93, 1149–1153 (2009).
    [4] B. Park, C. H. Park, M. Kim, and M. Han, “Polarized organic light-emitting device on a flexible giant birefringent optical reflecting polarizer substrate,” Opt. Express 17, 10136–10143 (2009).
    [5] H. Okimi, M. Hara, K. Asada, and Y. Sakaguchi, “Enhancement of the magnetic field effect on the emission intensity of an organic light-emitting diode induced by the operating time,” Jpn. J. Appl. Phys. 48, 061502-1–7 (2009).
    [6] G. Tsiminis, A. Ruseckas, I. D. W. Samuel, and G. A. Turnbull, “A two-photon pumped polyfluorene laser,” Appl. Phys. Lett. 94, 253304-1–3 (2009).
    [7] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys. 54, 3255–3259 (1983).
    [8] K. Kudo, M. Yamashina, and T. Moriizumi, “Field effect measurement of organic dye films,” Jpn. J. Appl. Phys. 23, 130 (1984).
    [9] L. Lan, J. Peng, M. Sun, J. Zhou, J. Zou, J. Wang, and Y. Cao, “Low-voltage, high-performance n-channel organic thin-film transistors based on tantalum pentoxide insulator modified by polar polymers,” Org. Electron. 10, 346–351 (2009).
    [10] S. Jingsheng, M. B. Chan-Park, and C. M. Li, “Bottom gate organic thin-film transistors fabricated by ultraviolet transfer embossing with improved device performance,” Org. Electron. 10, 396–401 (2009).
    [11] W. Fix, A. Ullmann, J. Ficker, and W. Clemens, “Fast polymer integrated circuits,” Appl. Phys. Lett. 81, 1735–1737 (2002).
    [12] N. Drolet, J.-F. Morin, N. Leclerc, S. Wakim, Y. Tao, and M. Leclerc, “2,7-carbazolenevinylene-based oligomer thin-film transistors: high mobility through structural ordering,” Adv. Funct. Mater. 15, 1671–1682 (2005).
    [13] T. G. Kim, E. H. Jeong, S. C. Lim, S. H. Kim, G. H. Kim, S. H. Kim, H.-Y. Jeon, and J. H. Youk, “PMMA-based patternable gate insulators for organic thin-film transistors,” Synth. Met. 159, 749–753 (2009).
    [14] E. Wang, M. Wang, L. Wang, C. Duan, J. Zhang, W. Cai, C. He, H. Wu, and Y. Cao, “Donor polymers containing benzothiadiazole and four thiophene rings in their repeating units with improved photovoltaic performance,” Macromolecules 42, 4410–4415 (2009).
    [15] W.-H. Baek, H. Yang, T.-S. Yoon, C.J. Kang, H. H. Lee, and Y.-S. Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells,” Sol. Energy Mater. Sol. Cells 93, 1263–1267 (2009).
    [16] S. Rait, S. Kashyap, P.K. Bhatnagar, P.C. Mathur, S.K. Sengupta, and J. Kumar, “Improving power conversion efficiency in polythiophene/fullerene-based bulk heterojunction solar cells,” Sol. Energy Mater. Sol. Cells 91, 757–763 (2007).
    [17] R. D. Bettignies, J. Leroy, M. Firon, and C. Sentein, “Accelerated lifetime measurements of P3HT:PCBM solar cells,” Synth. Met. 156, 510–513 (2006).
    [18] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913–915 (1987).
    [19] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990).
    [20] C. W. Tang, S. A. VanSlyke, and C. H. Chen, “Electroluminescence of doped organic thin films,” J. Appl. Phys. 65, 3610–3616 (1989).
    [21] J. Kido, M. Kimura, and K. Nagai, “Multilayer white light-emitting organic electroluminescent device,” Science 267, 1332–1334 (1995).
    [22] S.-C. Chang and Y. Yang, “Polymer solution light-emitting devices,” Appl. Phys. Lett. 74, 2081–2083 (1999).
    [23] S. Kim, C. Hsu, C. Zhang, H. Skulason, F. Uckert, D. LeCloux, Y. Cao, and I. Parker, “Degradation of PLEDs and a way to improve device performances,” J. Inform. Disp. 5, 14–18 (2004).
    [24] Y. Sun and S. R. Forrest, “Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,” Nature Photon. 2, 483–487 (2008).
    [25] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency,” Nature 459, 234–238 (2009).
    [26] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005).
    [27] D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, New York, 2003).
    [28] M. Pope and C. E. Swenberg, Electronics processes in organic crystals and polymers (Oxford, New York, 1999).
    [29] M. H.-C. Jin, “The thin-film deposition of conjugated molecules for organic electronics,” JOM 81–86 (2008).
    [30] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, “Electron and hole transport in poly(p-phenylene vinylene) devices,” Appl. Phys. Lett. 68, 3308–3310 (1996).
    [31] S. Forero, P. H. Nguyen, W. Brütting, and M. Schwoerer, “Charge carrier transport in poly(p-phenylenevinylene) light-emitting devices,” Phys. Chem. Chem. Phys. 1, 1769–1776 (1999).
    [32] O. Nuyken, S. Jungermann, V. Wiederhirn, E. Bacher, and K. Meerholz, “Modern trends in organic light-emitting devices (OLEDs),” Monatsh. Chem. 137, 811–824 (2006).
    [33] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151–154 (1998).
    [34] http://microscopy.fsu.edu/primer/java/jablonski/jabintro/
    [35] N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Dover, New York, 1964)
    [36] J. Frenkel, “On pre-breakdown phenomena in insulators and electronic semi-conductors,” Phys. Rev. 54, 647–648 (1938).
    [37] D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys. 52, 2285–2291 (1970).
    [38] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, R656–R659 (1997).
    [39] J. G. Simmons, “Richardson-Schottky effect in solids,” Phys. Rev. Lett. 15, 967–968 (1965).
    [40] I. A. Hümmelgen, L. S. Roman, F. C. Nart, L. O. Péres, and E. L. de Sá, “Polymer and polymer/metal interface characterization via Fowler–Nordheim tunneling measurements,” Appl. Phys. Lett. 68, 3194–3196 (1996).
    [41] G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15, 2555–2563 (2007).
    [42] U. Wolf, V. I. Arkhipov, and H. Bassler, “Current injection from a metal to a disordered hopping system. I. monte carlo simulation,” Phys. Rev. B 59, 7507–7513 (1999).
    [43] S. Barth, U. Wolf, and H. Bassler, “Current injection from a metal to a disordered hopping system. III. Comparison between experiment and monte carlo simulation,” Phys. Rev. B 60, 8791–8797 (1999).
    [44] M. Kiy, I. Biaggio, M. Koehler, and P. Günter, “Conditions for ohmic electron injection at the Mg/Alq3 interface,” Appl. Phys. Lett. 80, 4366–4368 (2002).
    [45] J. D. Watson and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature 171, 737–738 (1953).
    [46] M. S. Gentry, R. H. Dowen III, C. A. Wordy, S. Mattoo, J. R. Ecker, and J. E. Dixon, “The phosphatase laforin crosses evolutionary boundaries and links carbohydrate metabolism to neuronal disease,” J. Cell Biol. 178, 477–488 (2007).
    [47] K. Aoi, A. Takasu, and M. Okada, “DNA-based polymer hybrids. Part I. Compatibility and physical properties of poly(vinyl alcohol)/DNA sodium salt blend, ” Polymer 41, 2847–2853 (2000).
    [48] C. Aleman, B. Teixeira-Dias, D. Zanuy, F. Estrany, E. Armelin, and L. J. del Valle, “A comprehensive study of the interactions between DNA and poly(3,4-ethylenedioxythiophene),” Polymer 50, 1965–1974 (2009).
    [49] Y. Doi, J. Chiba, T. Morikawa, and M. Inouye, “Artificial DNA made exclusively of nonnatural C-nucleosides with four types of nonnatural bases,” J. Am. Chem. Soc. 130, 8762–8768 (2008).
    [50] W. J. Parak, T. Pellegrino, C. M. Micheel, D. Gerion, S. C. Williams, and P. Alivisatos, “Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis,” Nano Lett. 3, 33–36 (2002).
    [51] J. Zhang, Y. Liu, Y. Ke, and H. Yan, “Periodic square-like gold nanoparticle arrays template by self-assembled 2D DNA nanogrids on a surface,” Nano Lett. 6, 248–251 (2006).
    [52] H. J. Kim, Y. Roh, S. K. Kim, and B. Hong, “Fabrication and characterization of DNA-templated conductive gold nanoparticle chains,” J. Appl. Phys. 105, 074302-1–4 (2009).
    [53] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao, “Hierarchical self-assembly of DNA into symmetric supramolecular polyhedral,” Nature 452, 198–201 (2008).
    [54] A. J. Steckl, “DNA—A new material for photonics,” Nature Photon. 1, 3–5 (2007).
    [55] K. Tanaka and Y. Okahata, “A DNA—lipid complex in organic media and formation of an aligned cast film,” J. Am. Chem. Soc. 118, 10679–10683 (1996).
    [56] Y. Kawabe, L. Wang, S. Horinouchi, and N. Ogata, “Amplified apontaneous emission from fluorescent-dye-doped DNA–Surfactant complex films,” Adv. Mater. 12, 1281–1283 (2000).
    [57] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, “Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer,” Appl. Phys. Lett. 88, 171109-1–3 (2006).
    [58] D. Madhwal, S. S. Rait, A. Verma, A. Kumar, P.K. Bhatnagar, P.C. Mathur, M. Onoda, “Increased luminance of MEH–PPV and PFO based PLEDs by using salmon DNA as an electron blocking layer,” J. Lumin. 130, 331–333 (2010).
    [59] V. Kolachure and M. H.-C. Jin, “Fabrication of P3HT/PCBM bulk heterojuction solar cells with DNA complex layer,” presented at 33rd IEEE Photovoltaic Specialists Conference (2008)
    [60] B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, “Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric,” J. Appl. Phys. 100, 024514-1–4 (2006).
    [61] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwodiauer, S. Bauer, H. Piglmayer-Brezina, D. Bauerle, and N. S. Sariciftci, “Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric,” Org. Electron. 8, 648–654 (2007).
    [62] G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, “Microwave dielectric properties of DNA based polymers between 10 and 30 GHz,” IEEE Microwave Wireless Comp. Lett. 15, 232–234 (2005).
    [63] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “Enhanced fluorescence in electrospun dye-doped DNA nanofibers,” Soft Matter 4, 1448–1453 (2008).
    [64] J. Mysliwiec, L. Sznitko, S. Bartkiewicz, A. Miniewicz, Z. Essaidi, F. Kajzar, and B. Sahraoui, “Amplified spontaneous emission in the spiropyran-biopolymer based system,” Appl. Phys. Lett. 94, 241106-1–3 (2009).
    [65] R. A. Jones, W. X. Li, H. Spaeth, and A. J. Steckl, “Direct write electron beam patterning of DNA complex thin films,” J. Vac. Sci. Technol. B 26, 2567–2568 (2008).
    [66] A. Miniewicz, A. Kochalska, J. Mysliwiec, A. Samoc, M. Samoc, and J. G. Grote, “Deoxyribonucleic acid-based photochromic material for fast dynamic holography,” Appl. Phys. Lett. 91, 041118-1–3 (2007).
    [67] J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B 108, 8584–8591 (2004).
    [68] X. D. Liu, H. Y. Diao, and N. Nishi, “Applied chemistry of natural DNA,” Chem. Soc. Rev. 37, 2745–2757 (2008).
    [69] D. E. Diggs, J. Hagen, Z. Yu, E. Heckman, F. K. Hopkins, J. G. Grote, and A. Steckl, “Molecular binding and enhanced photoluminescence of bromocresol purple in marine derived DNA,” Proc. SPIE 5934, 593407-1–8 (2005).
    [70] J. E. Lee, E. D. Do, U. R. Lee, M. J. Cho, K. H. Kim, J.-I. Jin, D. H. Shin, S.-H. Choi, D. H. Choi, “Effect of binding mode on the photoluminescence of CTMA–DNA doped with (E)-2-(2-(4-(diethylamino)styryl)-4H-pyran-4-ylidene)malononitrile,” Polymer 49, 5417–5423 (2008).
    [71] D. H. Choi, J. E. Lee, Y.-W. Kwon, U. R. Lee, M. J. Cho, K. H. Kim, and J.-I. Jin, “Optical properties of DNA-CTMA and PA-CTMA doped with (E)-2- (2-(4-(diethylamino)styryl)-4H-pyan-4-ylidene)malononitrile (DCM),” Proc. SPIE 7118, 71180J-1–8 (2008).
    [72] J. Yoshida, L. Wang, S. Kobayashi, G.-J. Zhang, H. Ikeda, and N. Ogata, “Optical properties of photochromic-compound-doped marine-biopolymer DNA-surfactant complex films for switching applications,” Proc. SPIE 5351, 260–267 (2004).
    [73] E. M. Heckman, P. P. Yaney, J. G. Grote, and F. K. Hopkins, “Development and performance of an all-DNA-based electro-optic waveguide modulator,” Proc. SPIE 6401, 640108-1–10 (2006).
    [74] J. Mysliwiec, A. Kochalska, and A. Miniewicz, “Biopolymer-based material used in optical image correlation,” Appl. Opt. 47, 1902–1906 (2008).
    [75] G. Zhang, H. Takahashi, L. Wang, J. Yoshida, S. Kobayashi, S. Horinouchi, and N. Ogata, “Nonlinear optical materials derived from biopolymer (DNA)-surfactant-azo dye complex,” Proc. SPIE 4905, 375–380 (2002).
    [76] J. Mysliwiec, L. Sznitko, A. Miniewicz, F. Kajzar, and B. Sahraoui, “Study of the amplified spontaneous emission in a dye-doped biopolymer-based material,” J. Phys. D: Appl. Phys. 42, 085101-1–4 (2009).
    [77] Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
    [78] A. J. Steckl, H. Spaeth, K. Singh, J. Grote, and R. Naik, “Chirality of sulforhodamine dye molecules incorporated in DNA thin films,” Appl. Phys. Lett. 93, 193903-1–3 (2008).
    [79] H. You, H. Spaeth, V. N. L. Linhard, and A. J. Steckl, “Role of surfactants in the interaction of dye molecules in natural DNA polymers,” Langmuir 25, 11698–11702 (2009).
    [80] Y. Kawabe, L. Wang, T. Nakamura, and N. Ogata, “Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes,” Appl. Phys. Lett. 81, 1372–1374 (2002).
    [81] M. Ozaki, Y. Kagami, M. Wada, N. Ogata, K. Mito, T. Ishikawa, and S. Horinouchi, “Preparation of photo functional material,” Proc. SPIE 6037, 60370D-1–10 (2005).
    [82] K. Ishihara, Y. Kumakura, A. S. H. Hameed, G. Zhang, M. Eguchi, T. Ishikawa, H. Abe, A. Watanabe, T. Fukagawa, K. Fujii, L. Wang, N. Ogata, and S. Horinouchi, “Optical amplification properties of a cyanine dye-doped DNA-lipid complex fiber,” Proc. SPIE 4991, 166–174 (2003).
    [83] M. Ozaki, Y. Kagami, M. Wada, N. Ogata, K. Mito, T. Ishikawa, and S. Horinouchi, “Function of Plastic Optical Fiber composed of DNA compound,” Proc. SPIE 5635, 194–202 (2005).
    [84] J. Yoshida, T. Tajima, N. Nakai, M. Fukuda, K. Yamaoka, and N. Ogata, “Fabrication of waveguide structure of dye-doped DNA-lipid complex films,” Proc. SPIE 7040, 70400H-1–7 (2008).
    [85] M. Honda, N. Nakai, M. Fukuda, and Y. Kawabe, “Optical amplification and laser action in cyanine dyes doped in DNA complex,” Proc. SPIE 6646, 664609-1–8 (2007).
    [86] Y. Ner, D. Navarathne, D. M. Niedzwiedzki, J. G. Grote, A. V. Dobrynin, H. A. Frank, and G. A. Sotzing, “Stabilization of fluorophore in DNA thin films,” Appl. Phys. Lett. 95, 263701-1–3 (2009).
    [87] L. Wang, K. Ishihara, H. Izumi, M. Wada, G. Zhang, T. Ishikawa, A. Watanabe, S. Horinouchi, and N. Ogata, “Strongly luminescent rare-earth ion-doped DNA-CTMA complex film and fiber materials,” Proc. SPIE 4905, 143–153 (2002).
    [88] M. Wada, K. Ishihara, Y. Kagami, S. Horinouchi, N. Ogata, “Optical properties of rare earth methal chelates doped PMMA and DNA-CTMA films,” Proc. SPIE 5350, 199–205 (2004).
    [89] M. Wada, Y. Kagami, N. Ogata, T. Ishikawa, and S. Horinouchi, “Fabrication of functional material by using DNA-lipid complex and its optical property,” Proc. SPIE 5635, 181–189 (2005).
    [90] T. Koyama, Y. Kawabe, and N. Ogata, “Electroluminescence as a probe for electrical and optical properties of deoxyribonucleic acid,” Proc. SPIE 4464, 248–255 (2002).
    [91] Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. 48, 5134–5138 (2009).
    [92] G. Pawlik, A. C. Mitus, J. Mysliwiec, A. Miniewicz, J. G. Grote, “Photochromic dye semi-intercalation into DNA-based polymeric matrix: computer modeling and experiment,” Chem. Phys. Lett. 484, 321–323 (2010).
    [93] N. Ogata, Y. Kagami, M. Wada, and J. Yoshida, “DNA-hybrid materials for photonic applications,” Proc. SPIE 6646, 664603-1–16 (2007).
    [94] Y. Okahata, T. Kobayashi, K. Tanaka, and M. Shimomura, “Anisotropic electric conductivity in an aligned DNA cast film,” J. Am. Chem. Soc. 120, 6165–6166 (1998).
    [95] H. Watanabe, C. Manabe, T. Shigematsu, K. Shimotani, and M. Shimizu, “Single molecule DNA device measured with triple-probe atomic force microscope,” Appl. Phys. Lett. 79, 2462–2464 (2001).
    [96] H.-Y. Lee, H. Tanaka, and Y. Otsuka, K.-H. Yoo, J.-O. Lee, and T. Kawai, “Control of electrical conduction in DNA using oxygen hole doping,” Appl. Phys. Lett. 80, 1670–1672 (2002).
    [97] G. Maruccio, P. Visconti, V. Arima, S. D’Amico, A. Biasco, E. D’Amone, R. Cingolani, and R. Rinaldi, “Field effect transistor based on a modified DNA base,” Nano Lett. 3, 479–483 (2003).
    [98] M. Taniguchi, H.-Y. Lee, H. Tanaka, and T. Kawai, “Electrical properties of poly(dA)•poly(dT) and poly(dG)•poly(dC) DNA doped with iodine molecules,” Jpn. J. Appl. Phys. 42, L215–L216 (2003).
    [99] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, “DNA-templated assembly and electrode attachment of a conducting silver wire,” Nature 391, 775–778 (1998).
    [100] N. Kobayashi, S. Uemura, K. Kusabuka, T. Nakahira, and H. Takahashi, “An organic red-emitting diode with a water-soluble DNA–polyaniline complex containing Ru(bpy)32+,” J. Mater. Chem. 11, 1766–1768 (2001).
    [101] K. Hirata, T. Oyamada, T. Imai, H. Sasabe, C. Adachi, and T. Koyama, “Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer,” Appl. Phys. Lett. 85, 1627–1629 (2004).
    [102] P. P. Yaney, F. Ahmad, and J. G. Grote, “Raman microprobe spectroscopic studies of solid DNA-CTMA films,” Proc. SPIE 7040, 70400N-1–9 (2008).
    [103] F. Ouchen, S. Kim, G. Subramanyam, P. Yanney, L. Dai, R. Naik, and J. Grote, “Semiconductive properties of DNA-based materials,” Proc. SPIE 7118, 71180M-1–7 (2008).
    [104] P. P. Yaney, F. Ouchen, and J. G. Grote, “Characterization of polymer, DNA-based and silk thin film resistivities and of DNA-based films prepared for enhanced electrical conductivity,” Proc. SPIE 7403, 74030M-1–9 (2009).
    [105] R. A. Norwood, C.T. DeRose, R. Himmelhuber, N. Peyghambarian, J. Wang, L. Li, F. Ouchen, and J. E. Grote, “Dielectric and electrical properties of sol-gel/DNA blends,” Proc. SPIE 7403, 74030A-1–11 (2009).
    [106] O. Krupka, A. El-ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
    [107] B. Derkowska, M. Wojdyla, W. Bala, K. Jaworowicz, and M. Karpierz, “Influence of different peripheral substituents on the nonlinear optical properties of cobalt phthalocyanine core,” J. Appl. Phys. 101, 083112-1–9 (2007).
    [108] J. A. Hagen, W.-X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett. 7, 133–137 (2007).
    [109] Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, “Highly efficient quantum-dot light-emitting diodes with DNA–CTMA as a combined hole-transporting and electron-blocking layer,” ACS Nano 3, 737–743 (2009).
    [110] http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Product_Information_Sheet/d1626pis.Par. 0001.File.tmp/d1626pis.pdf
    [111] L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)—Cationic surfactant complexes: large-scale preparation and optical and thermal properties”, Chem. Mater. 13, 1273-1281 (2001).
    [112] E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. Munoz, and W. J. Parak, “Gold nanoparticles quench fluorescence by phase induced radiative rate suppression”, Nano Lett. 5, 585-589 (2005).
    [113] D. L. Pavia, G. M. Lampman, G. S. Kriz Introduction to Spectroscopy (Emily Barrosse, Philadelphia, 2001).
    [114] J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, “Electroluminescence emission pattern of organic light-emitting diodes: implications for device efficiency calculations”, J. Appl. Phys. 88, 1073-1081 (2000).
    [115] Z. Chen, P. Luo, and Q. Fu, “Preparation and properties of organo-modifier free PET/MMT nanocomposities via monomer intercalation and in situ polymerization”, Polym. Adv. Technol. 20, 916-925 (2009).
    [116] A. A. Silva, K. Dahmouche, and B. G. Soares, “The effect of addition of acrylic acid and thioglycolic acid on the nanostructure and thermal stability of PMMA–montmorillonite nanocomposites”, Appl. Clay Sci. 47, 414-420 (2010).
    [117] Y. Turhan, M. Dogan, and M. Alkan, “Poly(vinyl chloride)/kaolinite nanocomposites: characterization and thermal and optical properties”, Ind. Eng. Chem. Res. 49, 1503-1513 (2010).
    [118] S.-W. Wen, M.-T. Lee, and C. H. Chen, “Recent development of blue fluorescent OLED materials and devices”, J. Display Technol. 1, 90-99 (2005).
    [119] SantaLucia, J., Jr, “A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics”, Proc. Natl Acad. Sci. USA 95, 1460-1465 (1998).
    [120] Garrett and Reginald, Biochemistry (Thomson, Belmont, 2005)
    [121] http://www.clevios.com/index.php?page_id=1178
    [122] T.-W. Lee, O. Kwon, M.-G. Kim, S. H. Park, J. Chung, S. Y. Kim, Y. Chung, J.-Y. Park, E. Han, D. H. Huh, J.-J. Park, and L. Pu, “Hole-injecting conducting-polymer compositions for highly efficient and stable organic light-emitting diodes”, Appl. Phys. Lett. 87, 231106-1–3 (2005).
    [123] J. Lee, N. Chopra, S.-H. Eom, Y. Zheng, J. Xue, F. So, and J. Shi, “Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices,” Appl. Phys. Lett. 93, 123306-1–3 (2008).
    [124] S.-H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So, J. Xue, “Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices,” Org. Electron. 10, 686–691 (2009).
    [125] C.D. Wagner, Handbook of x-ray photoelectron spectroscopy (Perkin-Elmer, Minnesota, 1979).
    [126] J. G. Grote, N. Ogata, D. E. Diggs, and F. K. Hopkins, “Deoxyribonucleic acid (DNA) cladding layers for nonlinear optic polymer based electro-optic devices,” Proc. SPIE 4991, 621–625 (2003).
    [127] B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, “Effect of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors,” Macromolecules 42, 6741–6747 (2009).
    [128] R. Reyes, M. Cremona, E.E.S. Teotonio, H.F. Brito, O.L. Malta, “Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend,” Chem. Phys. Lett. 396, 54–58 (2004).
    [129] J. Xiao, Z. Deng, C. Liang, D. Xu, and Y. Xu, “An efficient and bright organic white-light-emitting device,” Displays 26, 129–132 (2005).
    [130] J. G. Grote, E. M. Heckman, D. E. Diggs, J. A. Hagen, P. P. Yaney, A. J. Steckl, S. J. Clarson, G. S. He, Q. Zheng, P. N. Prasad, J. S. Zetts, and F. K. Hopkins, “DNA-based materials for electro-optic applications: current status,” Proc. SPIE 5934, 593406-1–6 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE