簡易檢索 / 詳目顯示

研究生: 郭偉祥
Guo, Wei-Xiang
論文名稱: HarDNeXt:基於區段感受視野和連結重要性建構的卷積神經網路
HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network
指導教授: 林永隆
Lin, Youn-Long
口試委員: 黃俊達
Huang, Juinn-Dar
吳凱強
Wu, Kai-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 32
中文關鍵詞: 深度學習卷機神經網路節能感受視野
外文關鍵詞: DeepLearning, ConvolutionNeuralNetwork, EnergyEfficient, ReceptiveField
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有並列連接的最新卷積神經網絡,例如 DenseNet,FractalNet 和
    HarDNet 藉由大量的特徵融合運算在眾多計算機視覺任務(包括圖像分類
    和目標檢測)取得了傲人的成績。但是,相對密集的連接模式限制了這些
    有效模型的推理速度。在本文中,我們提出了一個維持多尺度特徵融合特
    色且但具有更少的記憶體搬運量的新計算模塊,稱為 HarDX 塊和一個用於
    設計特定於輸入大小的卷積神經網路結構名為 Stage Receptive Field 的新穎
    概念。基於這兩個創新的概念,我們提出了一種新的卷積神經網路結構,
    名為 HarDNeXt,速度分別比 DenseNets 和 HarDNets 快了 200%和 30%並
    且在進行推論所需的功耗上分別少了 60%和 15%。對於結腸鏡檢查圖像息
    肉分割的應用任務,HarDNeXt 與最先進的神經網路模型相比達到相同水平
    的精度並將運行速度提高了 25%。


    State­of­the­art Convolution Neural Networks with extensive feature aggregation via shortcut connections such as DenseNet, FractalNet and HarDNet have
    achieved remarkable results with extensive feature aggregations in numerous computer vision tasks, including image classification and object detection . However, the relatively dense connection pattern has impaired the inference speed. We
    propose a new computation block, called HarDX block, for maintaining multireceptive field feature fusion with low DRAM traffic and a novel concept, called
    Stage Receptive Field, for designing input­size­specific network architectures. Accordingly, we propose a new CNN architecture named HarDNeXt, which is 200%
    and 30% faster than DenseNets and HarDNets, respectively, while consuming 60%
    and 15% less energy, respectively. For an application task of polyp segmentation
    of colonoscopy images, HarDNeXt achieves the same level of accuracy and runs
    25% faster compared with a state­of­the­art network. Code, data, and experiment
    setup are open­sourced in GitHub.

    Acknowledgements 摘要 i Abstract ii 1 Introduction 1 2 Related Work 7 2.1 Manual Designed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Neural Architecture Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Proposed Methods 11 3.1 Improving Harmonic Dense Connection . . . . . . . . . . . . . . . . . . . . . 11 3.2 Stage Receptive Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 HarDNeXt Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Experiment Results 21 4.1 Classification Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Polyp Segmentation Application . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 Dataset and Training Strategy . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Conclusion and Future Work 29 Bibliography 31

    Bibliography
    [1] Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing neural network architectures
    using reinforcement learning. CoRR abs/1611.02167 (2016).
    [2] Bernal, J., Sánchez, F., Fernández­Esparrach, G., Gil, D., Rodríguez, C., and Vilariño, F.
    Wm­dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency
    maps from physicians. Computerized Medical Imaging and Graphics 43 (Jan. 2015), 99–
    111.
    [3] Cai, H., Zhu, L., and Han, S. Proxylessnas: Direct neural architecture search on target
    task and hardware. CoRR abs/1812.00332 (2018).
    [4] Chao, P., Kao, C., Ruan, Y., Huang, C., and Lin, Y. Hardnet: A low memory traffic
    network. CoRR abs/1909.00948 (2019).
    [5] Deng, J., Dong, W., Socher, R., Li, L., Kai Li, and Li Fei­Fei. Imagenet: A large­scale
    hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
    Recognition (2009), pp. 248–255.
    [6] Fan, D.­P., Ji, G.­P., Zhou, T., Chen, G., Fu, H., Shen, J., and Shao, L. Pranet: Parallel
    reverse attention network for polyp segmentation, 2020.
    [7] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition.
    CoRR abs/1512.03385 (2015).
    [8] Howard, A., Sandler, M., Chu, G., Chen, L., Chen, B., Tan, M., Wang, W., Zhu, Y.,
    Pang, R., Vasudevan, V., Le, Q. V., and Adam, H. Searching for mobilenetv3. CoRR
    abs/1905.02244 (2019).
    [9] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
    M., and Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision
    applications. CoRR abs/1704.04861 (2017).
    [10] Huang, C.­H., Wu, H.­Y., and Lin, Y.­L. Hardnet­mseg: A simple encoder­decoder polyp
    segmentation neural network that achieves over 0.9 mean dice and 86 fps, 2021.
    [11] Huang, G., Liu, Z., and Weinberger, K. Q. Densely connected convolutional networks.
    CoRR abs/1608.06993 (2016).
    [12] Jha, D., Smedsrud, P. H., Riegler, M. A., Halvorsen, P., de Lange, T., Johansen, D., and
    Johansen, H. D. Kvasir­seg: A segmented polyp dataset, 2019.
    31[13] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25:
    26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of
    a meeting held December 3­6, 2012, Lake Tahoe, Nevada, United States (2012), pp. 1106–
    1114.
    [14] Larsson, G., Maire, M., and Shakhnarovich, G. Fractalnet: Ultra­deep neural networks
    without residuals. CoRR abs/1605.07648 (2016).
    [15] Lee, Y., Hwang, J., Lee, S., Bae, Y., and Park, J. An energy and gpu­computation efficient
    backbone network for real­time object detection. CoRR abs/1904.09730 (2019).
    [16] Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable architecture search. CoRR
    abs/1806.09055 (2018).
    [17] Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. Inverted residuals
    and linear bottlenecks: Mobile networks for classification, detection and segmentation.
    CoRR abs/1801.04381 (2018).
    [18] Silva, J., Histace, A., Romain, O., Dray, X., and Granado, B. Toward embedded detection
    of polyps in wce images for early diagnosis of colorectal cancer. International journal of
    computer assisted radiology and surgery 9, 2 (March 2014), 283—293.
    [19] Simonyan, K., and Zisserman, A. Very deep convolutional networks for large­scale image
    recognition. arXiv preprint arXiv:1409.1556 (2014).
    [20] Tajbakhsh, N., Gurudu, S., and Liang, J. Automated polyp detection in colonoscopy videos
    using shape and context information. IEEE Transactions on Medical Imaging 35, 2 (Feb.
    2016), 630–644. Publisher Copyright: © 2015 IEEE. Copyright: Copyright 2017 Elsevier
    B.V., All rights reserved.
    [21] Tan, M., and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural
    networks. CoRR abs/1905.11946 (2019).
    [22] Vázquez, D., Bernal, J., Sánchez, F. J., Fernández­Esparrach, G., López, A. M., Romero,
    A., Drozdzal, M., and Courville, A. C. A benchmark for endoluminal scene segmentation
    of colonoscopy images. CoRR abs/1612.00799 (2016).
    [23] Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and
    Keutzer, K. Fbnet: Hardware­aware efficient convnet design via differentiable neural
    architecture search. CoRR abs/1812.03443 (2018).
    [24] Zhong, Z., Yan, J., and Liu, C. Practical network blocks design with q­learning. CoRR
    abs/1708.05552 (2017).

    QR CODE