研究生: |
黃國恆 Huang, Guo-Heng |
---|---|
論文名稱: |
次毫秒雷射退火對於以銅修飾鈀奈米觸媒成長於氧化鈷載體之結構變化 Effects of Sub-millisecond Laser Annealing on Structure Variation of Cu-clusters decoration on Co-oxide Supported Pd Nanocatalyst |
指導教授: |
陳燦耀
Chen, tsan-yao |
口試委員: |
林明緯
Lin, Ming-wei 陳柏均 Chen, Po-Chun 王冠文 Wang, Kuan-Wen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 奈米觸媒 、雷射退火 |
外文關鍵詞: | Nanocatalyst, Laser annealing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩階段,第一階段研究以濕式化學還原法,使用NaBH4作為還原劑,在活性碳上成長出五種不同銅比例之鈷鈀銅三層式奈米顆粒,樣品中鈷鈀金屬莫爾比為1:1,銅金屬原子則為鈷原子之0.025、0.05、0.1、0.2、0.3,所製作之樣品分別命名為CPC0025、CPC005、CPC01、CPC02及CPC03。由電化學分析推定其表面組成與電性後,使用X光光電子能譜與高解析穿透式電子顯微鏡進一步確認表面組成,再以X光吸收光譜與X光繞射儀分析其局部結構,如:化學態、有序性及周圍環境等,最後使用氣相層析儀進行分析,判斷其作為二氧化碳還原反應奈米觸媒之應用性。
第二階段以1 mJ/pluse及10 mJ/pluse次毫秒雷射退火對CPC0025、CPC01及CPC03進行退火。實驗結果顯示不同能量的雷射使原子能夠移動的距離不同,在1 mJ/pluse雷射退火後表面的銅原子分散幫助鈷與鈀原子的金屬態增加,銅自身的氧化態增加,同時鈀原子的有序性得到提升;10 mJ/pluse雷射退火後表面的銅原子則會產生聚集,鈷與鈀原子會再次氧化,銅自身的金屬態上升,由於得到更大的能量鈀原子排列能夠變得更加整齊。更高比例銅原子使上述效應影響更大,更厚的銅原子則需要更高能量的退火才能將氧化銅還原為金屬。作為二氧化碳還原奈米觸媒的應用,CPC0025在10 mJ/pluse雷射退火後可以提高一氧化碳及甲烷產量,1 mJ/pluse的雷射退火則可使CPC01對於甲烷的選擇性更好。
This research is divided into two parts. In the first part, activated carbon supported CoPdCu ternary nanoparticles were synthesized by a wet chemical reduction method with different molar ratios. The molar ratios were respectively 1:1:0.025, 1:1:0.05, 1:1:0.1, 1:1:0.2, 1:1:0.3 (namely CPC0025 - CPC03). To characterize the CoPdCu nanoparticles, used electrochemical analysis to confirm the chemical compound on the particle’s surface. Then used X-ray absorption spectroscopy and X-ray diffraction to analysis the fine structure, ex: chemical state, ordering and surrounding environment. At last, gas chromatography was used for determining the applicability as the nanocatalysts for CO2 reduction reaction.
In the second part, 1 mJ/pluse and 10 mJ/pluse sub-millisecond laser annealing were used to anneal CPC0025, CPC01 and CPC03. Experimental results show that lasers of different energy let atoms moved different distances. After 1 mJ/pluse laser annealing, the Cu on the surface dispersed, which can increase the metal state of Co and Pd surface. The oxidation state of Cu increased, and the ordering of Pd improved; After 10 mJ/pluse laser annealing, the Cu on the surface gathered and grew together, which can increase the oxidation state of Co and Pd surface. The metal state of Cu increased, and Pd arrangement became more orderly due to greater energy. The higher amount of Cu made the above-mentioned effect greater, and the thicker Cu thickness required higher annealing energy to reduce the Cu oxide to the metal. As the application of nanocatalysts for CO2 reduction, CPC0025 can increase the production of CO and CH4 after 10 mJ/pluse laser annealing, and 1 mJ/pluse laser annealing let CPC01 selectivity for methane better.
1. Liu, Y., Liang, D., Du, Y., Zhang, L., & Yu, D. (2009). Mobilities and diffusivities in fcc Co–X (X=Ag, Au, Cu, Pd and Pt) alloys. Calphad, 33, 695–703.
2. Chakraborty, J., Welzel, U., & Mittemeijer, E. J. (2010). Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples. Thin Solid Films, 518(8), 2010-2020.
3. Schmidt, B., & Wetzig, K. (2013). Materials Processing. In B. Schmidt & K. Wetzig (Eds.), Ion Beams in Materials Processing and Analysis (pp. 117-251). Springer Vienna.
4. Jin, Z., Nackashi, D., Lu, W., Kittrell, C., & Tour, J. M. (2010). Decoration, Migration, and Aggregation of Palladium Nanoparticles on Graphene Sheets. Chemistry of Materials, 22(20), 5695-5699.
5. Lim, T. H., McCarthy, D., Hendy, S. C., Stevens, K. J., Brown, S. A., & Tilley, R. D. (2009). Real-Time TEM and Kinetic Monte Carlo Studies of the Coalescence of Decahedral Gold Nanoparticles. ACS Nano, 3(11), 3809-3813.
6. Narsinga Rao, G., Yao, Y. D., & Chen, J. W. (2009). Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing. Journal of Applied Physics, 105(9), 093901.
7. Zeng, H., Sun, S., Sandstrom, R. L., & Murray, C. (2003). Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. Journal of Magnetism and Magnetic Materials, 266, 227-232.
8. Ding, Y., Fan, F., Tian, Z., & Wang, Z. L. (2010). Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles. Journal of the American Chemical Society, 132(35), 12480-12486.
9. Chen, X., Chen, Y., Dai, J., Yan, M., Zhao, D., Li, Q., & Qiu, M. (2014). Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing [10.1039/C3NR05745C]. Nanoscale, 6(3), 1756-1762.
10. Hodak, J. H., Henglein, A., Giersig, M., & Hartland, G. V. (2000). Laser-Induced Inter-Diffusion in AuAg Core−Shell Nanoparticles. The Journal of Physical Chemistry B, 104(49), 11708-11718.
11. Myers, H.P. (1990). Introductory Solid State Physics (1st ed.). Taylor & Francis. 1997
12. Koningsberger, D C, & Prins, R. X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988
13. Ong, A. L., Inglis, K. K., Whelligan, D. K., Murphy, S., & Varcoe, J. R. (2015). Effect of cationic molecules on the oxygen reduction reaction on fuel cell grade Pt/C (20 wt%) catalyst in potassium hydroxide (aq, 1 mol dm−3) [10.1039/C4CP04973J]. Physical Chemistry Chemical Physics, 17(18), 12135-12145.